Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 12240, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699288

RESUMEN

Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.


Asunto(s)
Camellia sinensis/metabolismo , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Té/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Carboxiliasas/metabolismo , Frío , Respuesta al Choque por Frío/fisiología , Óxidos N-Cíclicos/metabolismo , Glutamato Descarboxilasa/metabolismo , Imidazoles/metabolismo , Donantes de Óxido Nítrico/metabolismo , Ornitina Descarboxilasa/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Putrescina/metabolismo , S-Nitroso-N-Acetilpenicilamina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
2.
Funct Integr Genomics ; 20(4): 497-508, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31897824

RESUMEN

The voltage-gated chloride channel (CLC) superfamily is one of the most important anion channels that is widely distributed in bacteria and plants. CLC is involved in transporting various anions such as chloride (Cl-) and fluoride (F-) in and out of cells. Although Camellia sinensis is a hyper-accumulated F plant, there is no studies on the CLC gene superfamily in the tea plant. Here, 8 CLC genes were identified from C. sinensis and they were named CsCLC1-8. The structure of CsCLC genes and the proteins were not conserved; the number of exons varied from 3 to 24, and the number of transmembrane domains contained 2 to 10. Furthermore, phylogenetic analysis revealed that CsCLC4-8 in subclass I contained the typical conserved domains GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), and CsCLC1-3 in subclass II did not contain any of the three conserved residues. We measured the expression levels of CsCLCs in roots, stems and leaves to assess the responses to different concentrations of Cl- and F-. The result indicated that CsCLCs participated in subfunctionalization in response to Cl- and F-, and CsCLC1-3 was more sensitive to F- treatments than CsCLC4-8, CsCLC6 and CsCLC7 may participate in absorption and long-distance transport of Cl-.


Asunto(s)
Camellia sinensis/genética , Canales de Cloruro/genética , Proteínas de Plantas/genética , Camellia sinensis/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Secuencia Conservada , Genoma de Planta , Familia de Multigenes , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Dominios Proteicos
3.
Int J Mol Sci ; 20(2)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634430

RESUMEN

Tea (Camellia sinensis (L.) O. Kuntze), one of the main crops in China, is high in various bioactive compounds including flavonoids, catechins, caffeine, theanine, and other amino acids. C. sinensis is also known as an accumulator of fluoride (F), and the bioactive compounds are affected by F, however, the mechanism remains unclear. Here, the effects of F treatment on the accumulation of F and major bioactive compounds and gene expression were investigated, revealing the molecular mechanisms affecting the accumulation of bioactive compounds by F treatment. The results showed that F accumulation in tea leaves gradually increased under exogenous F treatments. Similarly, the flavonoid content also increased in the F treatment. In contrast, the polyphenol content, free amino acids, and the total catechins decreased significantly. Special amino acids, such as sulfur-containing amino acids and proline, had the opposite trend of free amino acids. Caffeine was obviously induced by exogenous F, while the theanine content peaked after two day-treatment. These results suggest that the F accumulation and content of bioactive compounds were dramatically affected by F treatment. Furthermore, differentially expressed genes (DEGs) related to the metabolism of main bioactive compounds and amino acids, especially the pivotal regulatory genes of catechins, caffeine, and theanine biosynthesis pathways, were identified and analyzed using high-throughput Illumina RNA-Seq technology and qRT-PCR. The expression of pivotal regulatory genes is consistent with the changes of the main bioactive compounds in C. sinensis leaves, indicating a complicated molecular mechanism for the above findings. Overall, these data provide a reference for exploring the possible molecular mechanism of the accumulation of major bioactive components such as flavonoid, catechins, caffeine, theanine and other amino acids in tea leaves in response to fluoride treatment.


Asunto(s)
Camellia sinensis/efectos de los fármacos , Camellia sinensis/genética , Fluoruros/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Vías Biosintéticas , Camellia sinensis/química , Camellia sinensis/metabolismo , Metabolismo Energético/efectos de los fármacos , Flavonoides/química , Fitoquímicos/química , Polifenoles/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA