Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 33(8): 2794-2811, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34235541

RESUMEN

Over 30 years ago, an intriguing posttranslational modification was found responsible for creating concanavalin A (conA), a carbohydrate-binding protein from jack bean (Canavalia ensiformis) seeds and a common carbohydrate chromatography reagent. ConA biosynthesis involves what was then an unprecedented rearrangement in amino-acid sequence, whereby the N-terminal half of the gene-encoded conA precursor (pro-conA) is swapped to become the C-terminal half of conA. Asparaginyl endopeptidase (AEP) was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of circular permutation, we generated recombinant jack bean pro-conA plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 and 2.7 Å, respectively. By reconstituting conA biosynthesis in vitro, we prove CeAEP1 alone can perform both cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both reactions. Biophysical assays illustrated that pro-conA is less stable than conA. This observation was explained by fewer intermolecular interactions between subunits in the pro-conA crystal structure and consistent with a difference in the prevalence for tetramerization in solution. These findings elucidate the consequences of circular permutation in the only posttranslation example known to occur in nature.


Asunto(s)
Concanavalina A/química , Concanavalina A/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Precursores de Proteínas/metabolismo , Sitios de Unión , Canavalia/enzimología , Dominio Catalítico , Dicroismo Circular , Concanavalina A/genética , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Concentración de Iones de Hidrógeno , Metilmanósidos/metabolismo , Modelos Moleculares , Conformación Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluciones
2.
Biochem Soc Trans ; 49(2): 965-976, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33666219

RESUMEN

Asparaginyl endopeptidases (AEPs) are versatile enzymes that in biological systems are involved in producing three different catalytic outcomes for proteins, namely (i) routine cleavage by bond hydrolysis, (ii) peptide maturation, including macrocyclisation by a cleavage-coupled intramolecular transpeptidation and (iii) circular permutation involving separate cleavage and transpeptidation reactions resulting in a major reshuffling of protein sequence. AEPs differ in their preference for cleavage or transpeptidation reactions, catalytic efficiency, and preference for asparagine or aspartate target residues. We look at structural analyses of various AEPs that have laid the groundwork for identifying important determinants of AEP function in recent years, with much of the research impetus arising from the potential biotechnological and pharmaceutical applications.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Simulación de Dinámica Molecular , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Dominio Catalítico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Hidrólisis , Péptidos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Conformación Proteica , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/genética , Especificidad por Sustrato
3.
Plant J ; 98(6): 988-999, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790358

RESUMEN

Plant asparaginyl endopeptidases (AEPs) are expressed as inactive zymogens that perform maturation of seed storage protein upon cleavage-dependent autoactivation in the low-pH environment of storage vacuoles. The AEPs have attracted attention for their macrocyclization reactions, and have been classified as cleavage or ligation specialists. However, we have recently shown that the ability of AEPs to produce either cyclic or acyclic products can be altered by mutations to the active site region, and that several AEPs are capable of macrocyclization given favorable pH conditions. One AEP extracted from Clitoria ternatea seeds (butelase 1) is classified as a ligase rather than a protease, presenting an opportunity to test for loss of cleavage activity. Here, making recombinant butelase 1 and rescuing an Arabidopsis thaliana mutant lacking AEP, we show that butelase 1 retains cleavage functions in vitro and in vivo. The in vivo rescue was incomplete, consistent with some trade-off for butelase 1 specialization toward macrocyclization. Its crystal structure showed an active site with only subtle differences from cleaving AEPs, suggesting the many differences in its peptide-binding region are the source of its efficient macrocyclization. All considered, it seems that either butelase 1 has not fully specialized or a requirement for autocatalytic cleavage is an evolutionary constraint upon macrocyclizing AEPs.


Asunto(s)
Arabidopsis/enzimología , Clitoria/enzimología , Cisteína Endopeptidasas/metabolismo , Ligasas/metabolismo , Arabidopsis/genética , Evolución Biológica , Catálisis , Dominio Catalítico , Clitoria/genética , Cristalografía por Rayos X , Ciclización , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Ligasas/química , Ligasas/genética , Modelos Estructurales , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo
4.
Elife ; 72018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29384475

RESUMEN

Constrained, cyclic peptides encoded by plant genes represent a new generation of drug leads. Evolution has repeatedly recruited the Cys-protease asparaginyl endopeptidase (AEP) to perform their head-to-tail ligation. These macrocyclization reactions use the substrates amino terminus instead of water to deacylate, so a peptide bond is formed. How solvent-exposed plant AEPs macrocyclize is poorly understood. Here we present the crystal structure of an active plant AEP from the common sunflower, Helianthus annuus. The active site contained electron density for a tetrahedral intermediate with partial occupancy that predicted a binding mode for peptide macrocyclization. By substituting catalytic residues we could alter the ratio of cyclic to acyclic products. Moreover, we showed AEPs from other species lacking cyclic peptides can perform macrocyclization under favorable pH conditions. This structural characterization of AEP presents a logical framework for engineering superior enzymes that generate macrocyclic peptide drug leads.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Helianthus/enzimología , Helianthus/metabolismo , Péptidos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Ribosomas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA