Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-27325708

RESUMEN

Epigenetic modifications play an important role in modulating genome function. In mammals, inappropriate epigenetic states can cause embryonic lethality and various acquired and inherited diseases; hence, it is important to understand how such states are formed and maintained in particular genomic contexts. Genomic imprinting is a process in which epigenetic states provide a sustained memory of parental origin and cause gene expression/repression from only one of the two parental chromosomes. Genomic imprinting is therefore a valuable model to decipher the principles and processes associated with the targeting and maintenance of epigenetic states in general. Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are proteins that have the potential to mediate this. ZFP57, one of the best characterized proteins in this family, has been shown to target and maintain epigenetic states at imprinting control regions after fertilization. Its role in imprinting through the use of ZFP57 mutants in mouse and the wider implications of KRAB-ZFPs for the targeted maintenance of epigenetic states are discussed here.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica/genética , Impresión Genómica/genética , Proteínas Represoras/genética , Animales , Factores de Transcripción de Tipo Kruppel , Ratones
2.
DNA Repair (Amst) ; 10(10): 1071-6, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21868291

RESUMEN

53BP1 is an established player in the cellular response to DNA damage and is a canonical component of ionizing-radiation induced foci--that cadre of proteins which assemble at DNA double strand breaks following radiation exposure and which are readily visualized by immunofluorescence microscopy. While its roles in p53 regulation and cell cycle checkpoint activation have been studied for some time, the impact of 53BP1 on DNA double strand break rejoining has only come to light in the past few years. Convincing evidence now exists for 53BP1 significantly affecting the outcome of DNA double strand break repair in several contexts, many of which hint to an important role in modulating chromatin structure surrounding the break site. Here, we highlight the known and emerging roles of 53BP1 in DNA double strand break repair, including the repair of lesions induced within heterochromatin, following telomere uncapping, in long-range V(D)J recombination, during immunoglobulin class switch recombination and its much debated role in regulating resection during homologous recombination.


Asunto(s)
Reparación del ADN/genética , Heterocromatina/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Recombinación Genética/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular , Daño del ADN/genética , Genes p53/genética , Recombinación Homóloga , Humanos , Cambio de Clase de Inmunoglobulina/genética , Radiación Ionizante , Telómero/genética , Proteína 1 de Unión al Supresor Tumoral P53 , Recombinación V(D)J/genética
3.
Mol Cell Biol ; 31(19): 4022-35, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21791604

RESUMEN

Heterochromatin (HC) poses a barrier to γH2AX focus expansion and DNA double-strand break (DSB) repair, the latter being relieved by ATM-dependent KAP-1 phosphorylation. Using high-resolution imaging, we show here that the HC superstructure markedly restricts ATM signaling to cell cycle checkpoint proteins. The impact of HC is greater than anticipated from the percentage of HC-DNA and, in distinction to DSB repair, ATM only partly overcomes the constraints posed by HC. Importantly, we examine ATM signaling in human syndromes with disordered HC. After depletion of MeCP2 and DNMT3B, proteins defective in the Rett and immunodeficiency with centromere instability and facial anomalies (ICF) syndromes, respectively, we demonstrate enhanced γH2AX signal expansion at HC-chromocenters in mouse NIH 3T3 cells, which have visible HC-chromocenters. Previous studies have shown that the G(2)/M checkpoint is inefficient requiring multiple DSBs to initiate arrest. MeCP2 and DNMT3B depletion leads to hypersensitive radiation-induced G(2)/M checkpoint arrest despite normal DSB repair. Cell lines from Rett, ICF, and Hutchinson-Guildford progeria syndrome patients similarly showed hyperactivated ATM signaling and hypersensitive and prolonged G(2)/M checkpoint arrest. Collectively, these findings reveal that heterochromatin contributes to the previously described inefficient G(2)/M checkpoint arrest and demonstrate how the signaling response can be uncoupled from DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Enfermedades Genéticas Congénitas/genética , Heterocromatina/metabolismo , Heterocromatina/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/genética , Fibroblastos/citología , Fibroblastos/fisiología , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Síndrome de Rett/genética , Síndrome , Proteína 28 que Contiene Motivos Tripartito , Proteínas Supresoras de Tumor/genética , ADN Metiltransferasa 3B
4.
Mol Cell Biol ; 30(13): 3371-83, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20421415

RESUMEN

ATM-dependent initiation of the radiation-induced G(2)/M checkpoint arrest is well established. Recent results have shown that the majority of DNA double-strand breaks (DSBs) in G(2) phase are repaired by DNA nonhomologous end joining (NHEJ), while approximately 15% of DSBs are slowly repaired by homologous recombination. Here, we evaluate how the G(2)/M checkpoint is maintained in irradiated G(2) cells, in light of our current understanding of G(2) phase DSB repair. We show that ATM-dependent resection at a subset of DSBs leads to ATR-dependent Chk1 activation. ATR-Seckel syndrome cells, which fail to efficiently activate Chk1, and small interfering RNA (siRNA) Chk1-treated cells show premature mitotic entry. Thus, Chk1 significantly contributes to maintaining checkpoint arrest. Second, sustained ATM signaling to Chk2 contributes, particularly when NHEJ is impaired by XLF deficiency. We also show that cells lacking the mediator proteins 53BP1 and MDC1 initially arrest following radiation doses greater than 3 Gy but are subsequently released prematurely. Thus, 53BP1(-/-) and MDC1(-/-) cells manifest a checkpoint defect at high doses. This failure to maintain arrest is due to diminished Chk1 activation and a decreased ability to sustain ATM-Chk2 signaling. The combined repair and checkpoint defects conferred by 53BP1 and MDC1 deficiency act synergistically to enhance chromosome breakage.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , División Celular/fisiología , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Fase G2/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , División Celular/efectos de la radiación , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Fibroblastos/citología , Fibroblastos/fisiología , Fase G2/efectos de la radiación , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Telomerasa/genética , Telomerasa/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína 1 de Unión al Supresor Tumoral P53
5.
Nat Cell Biol ; 12(2): 177-84, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20081839

RESUMEN

DNA double-strand breaks (DSBs) trigger ATM (ataxia telangiectasia mutated) signalling and elicit genomic rearrangements and chromosomal fragmentation if misrepaired or unrepaired. Although most DSB repair is ATM-independent, approximately 15% of ionizing radiation (IR)-induced breaks persist in the absence of ATM-signalling. 53BP1 (p53-binding protein 1) facilitates ATM-dependent DSB repair but is largely dispensable for ATM activation or checkpoint arrest. ATM promotes DSB repair within heterochromatin by phosphorylating KAP-1 (KRAB-associated protein 1, also known as TIF1beta, TRIM28 or KRIP-1; ref. 2). Here, we show that the ATM signalling mediator proteins MDC1, RNF8, RNF168 and 53BP1 are also required for heterochromatic DSB repair. Although KAP-1 phosphorylation is critical for 53BP1-mediated repair, overall phosphorylated KAP-1 (pKAP-1) levels are only modestly affected by 53BP1 loss. pKAP-1 is transiently pan-nuclear but also forms foci overlapping with gammaH2AX in heterochromatin. Cells that do not form 53BP1 foci, including human RIDDLE (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties) syndrome cells, fail to form pKAP-1 foci. 53BP1 amplifies Mre11-NBS1 accumulation at late-repairing DSBs, concentrating active ATM and leading to robust, localized pKAP-1. We propose that ionizing-radiation induced foci (IRIF) spatially concentrate ATM activity to promote localized alterations in regions of chromatin otherwise inhibitory to repair.


Asunto(s)
Reparación del ADN/fisiología , Heterocromatina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Represoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/genética , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Heterocromatina/efectos de la radiación , Humanos , Immunoblotting , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Homóloga de MRE11 , Ratones , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Transactivadores/metabolismo , Proteína 28 que Contiene Motivos Tripartito , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/metabolismo
6.
Biochem Soc Trans ; 37(Pt 3): 569-76, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19442252

RESUMEN

DNA NHEJ (non-homologous end-joining) is the major DNA DSB (double-strand break) repair pathway in mammalian cells. Although NHEJ-defective cell lines show marked DSB-repair defects, cells defective in ATM (ataxia telangiectasia mutated) repair most DSBs normally. Thus NHEJ functions independently of ATM signalling. However, approximately 15% of radiation-induced DSBs are repaired with slow kinetics and require ATM and the nuclease Artemis. DSBs persisting in the presence of an ATM inhibitor, ATMi, localize to heterochromatin, suggesting that ATM is required for repairing DSBs arising within or close to heterochromatin. Consistent with this, we show that siRNA (small interfering RNA) of key heterochromatic proteins, including KAP-1 [KRAB (Krüppel-associated box) domain-associated protein 1], HP1 (heterochromatin protein 1) and HDAC (histone deacetylase) 1/2, relieves the requirement for ATM for DSB repair. Furthermore, ATMi addition to cell lines with genetic alterations that have an impact on heterochromatin, including Suv39H1/2 (suppressor of variegation 3-9 homologue 1/2)-knockout, ICFa (immunodeficiency, centromeric region instability, facial anomalies syndrome type a) and Hutchinson-Guilford progeria cell lines, fails to have an impact on DSB repair. KAP-1 is a highly dose-dependent, transient and ATM-specific substrate, and mutation of the ATM phosphorylation site on KAP-1 influences DSB repair. Collectively, the findings show that ATM functions to overcome the barrier to DSB repair posed by heterochromatin. However, even in the presence of ATM, gamma-H2AX (phosphorylated histone H2AX) foci form on the periphery rather than within heterochromatic centres. Finally, we show that KAP-1's association with heterochromatin is diminished as cells progress through mitosis. We propose that KAP-1 is a critical heterochromatic factor that undergoes specific modifications to promote DSB repair and mitotic progression in a manner that allows localized and transient chromatin relaxation, but precludes significant dismantling of the heterochromatic superstructure.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Heterocromatina/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Sitios de Unión/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Técnica del Anticuerpo Fluorescente , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Immunoblotting , Ratones , Mutación , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Radiación Ionizante , Recombinación Genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Mol Cell ; 31(2): 167-77, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657500

RESUMEN

Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Desoxirribonucleasas/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/enzimología , Fibroblastos/efectos de la radiación , Heterocromatina/efectos de la radiación , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Radiación Ionizante , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de la radiación , Proteína 28 que Contiene Motivos Tripartito
8.
Genome Biol ; 8(7): R139, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17625002

RESUMEN

BACKGROUND: The domestic pig is being increasingly exploited as a system for modeling human disease. It also has substantial economic importance for meat-based protein production. Physical clone maps have underpinned large-scale genomic sequencing and enabled focused cloning efforts for many genomes. Comparative genetic maps indicate that there is more structural similarity between pig and human than, for example, mouse and human, and we have used this close relationship between human and pig as a way of facilitating map construction. RESULTS: Here we report the construction of the most highly continuous bacterial artificial chromosome (BAC) map of any mammalian genome, for the pig (Sus scrofa domestica) genome. The map provides a template for the generation and assembly of high-quality anchored sequence across the genome. The physical map integrates previous landmark maps with restriction fingerprints and BAC end sequences from over 260,000 BACs derived from 4 BAC libraries and takes advantage of alignments to the human genome to improve the continuity and local ordering of the clone contigs. We estimate that over 98% of the euchromatin of the 18 pig autosomes and the X chromosome along with localized coverage on Y is represented in 172 contigs, with chromosome 13 (218 Mb) represented by a single contig. The map is accessible through pre-Ensembl, where links to marker and sequence data can be found. CONCLUSION: The map will enable immediate electronic positional cloning of genes, benefiting the pig research community and further facilitating use of the pig as an alternative animal model for human disease. The clone map and BAC end sequence data can also help to support the assembly of maps and genome sequences of other artiodactyls.


Asunto(s)
Genoma , Mapeo Físico de Cromosoma , Sus scrofa/genética , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Cromosomas de los Mamíferos , Clonación Molecular , Biblioteca de Genes , Datos de Secuencia Molecular
9.
Dev Cell ; 12(3): 349-61, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17336902

RESUMEN

Polarized cells, such as neuronal, epithelial, and fungal cells, all display a specialized organization of their microtubules (MTs). The interphase MT cytoskeleton of the rod-shaped fission yeast, Schizosaccharomyces pombe, has been extensively described by fluorescence microscopy. Here, we describe a large-scale, electron tomography investigation of S. pombe, including a 3D reconstruction of a complete eukaryotic cell volume at sufficient resolution to show both how many MTs there are in a bundle and their detailed architecture. Most cytoplasmic MTs are open at one end and capped at the other, providing evidence about their polarity. Electron-dense bridges between the MTs themselves and between MTs and the nuclear envelope were frequently observed. Finally, we have investigated structure/function relationships between MTs and both mitochondria and vesicles. Our analysis shows that electron tomography of well-preserved cells is ideally suited for describing fine ultrastructural details that were not visible with previous techniques.


Asunto(s)
Polaridad Celular/fisiología , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Tomografía Computarizada por Rayos X/métodos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Interfase/fisiología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Moleculares , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Polímeros/metabolismo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA