Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(17): eadf9299, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126563

RESUMEN

The shallower portions of subduction zone megathrust faults host Earth's most hazardous tsunamigenic earthquakes, yet understanding how and when they slip remains elusive because of challenges making seafloor observations. We performed Global Navigation Satellite System Acoustic seafloor geodetic surveys before and ~2.5 months after the 29 July 2021 Mw (moment magnitude) 8.2 Chignik, Alaska, earthquake and determine ~1.4 meters cumulative co- and post-seismic horizontal displacement ~60 kilometers from the megathrust front. Only for the 2011 Mw 9 Tohoku event have closer subduction zone earthquake displacements been observed. We estimate ~2 to 3 meters of megathrust afterslip shallower than 20 kilometers, a portion of the megathrust on which both inter- and co-seismic slip likely had occurred previously. Our analysis demonstrates that by 2.5 months, shallower and deeper moment had effectively equilibrated on the megathrust, suggesting that its tsunamigenic potential remains no more elevated than before the earthquake.

2.
Sci Rep ; 10(1): 10219, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576880

RESUMEN

The submarine volcano Axial Seamount has exhibited an inflation predictable eruption cycle, which allowed for the successful forecast of its 2015 eruption. However, the exact triggering mechanism of its eruptions remains ambiguous. The inflation predictable eruption pattern suggests a magma reservoir pressure threshold at which eruptions occur, and as such, an overpressure eruption triggering mechanism. However, recent models of volcano unrest suggest that eruptions are triggered when conditions of critical stress are achieved in the host rock surrounding a magma reservoir. We test hypotheses of eruption triggering using 3-dimensional finite element models which track stress evolution and mechanical failure in the host rock surrounding the Axial magma reservoir. In addition, we provide an assessment of model sensitivity to various temperature and non-temperature-dependent rheologies and external tectonic stresses. In this way, we assess the contribution of these conditions to volcanic deformation, crustal stress evolution, and eruption forecasts. We conclude that model rheology significantly impacts the predicted timing of through-going failure and eruption. Models consistently predict eruption at a reservoir pressure threshold of 12-14 MPa regardless of assumed model rheology, lending support to the interpretation that eruptions at Axial Seamount are triggered by reservoir overpressurization.

3.
Science ; 354(6318): 1399-1403, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27980205

RESUMEN

Deformation of the ground surface at active volcanoes provides information about magma movements at depth. Improved seafloor deformation measurements between 2011 and 2015 documented a fourfold increase in magma supply and confirmed that Axial Seamount's eruptive behavior is inflation-predictable, probably triggered by a critical level of magmatic pressure. A 2015 eruption was successfully forecast on the basis of this deformation pattern and marked the first time that deflation and tilt were captured in real time by a new seafloor cabled observatory, revealing the timing, location, and volume of eruption-related magma movements. Improved modeling of the deformation suggests a steeply dipping prolate-spheroid pressure source beneath the eastern caldera that is consistent with the location of the zone of highest melt within the subcaldera magma reservoir determined from multichannel seismic results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA