Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 28(10): 1911-6, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26742807

RESUMEN

Organic electronics have been developed according to an orthodox doctrine advocating "all-printed'', "all-organic'' and "ultra-low-cost'' primarily targeting various e-paper applications. In order to harvest from the great opportunities afforded with organic electronics potentially operating as communication and sensor outposts within existing and future complex communication infrastructures, high-quality computing and communication protocols must be integrated with the organic electronics. Here, we debate and scrutinize the twinning of the signal-processing capability of traditional integrated silicon chips with organic electronics and sensors, and to use our body as a natural local network with our bare hand as the browser of the physical world. The resulting platform provides a body network, i.e., a personalized web, composed of e-label sensors, bioelectronics, and mobile devices that together make it possible to monitor and record both our ambience and health-status parameters, supported by the ubiquitous mobile network and the resources of the "cloud".

2.
Proc Natl Acad Sci U S A ; 111(33): 11943-8, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25002504

RESUMEN

Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.

3.
Biomed Eng Online ; 12: 64, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23827015

RESUMEN

BACKGROUND: ECG (Electrocardiogram) measurements in home health care demands new sensor solutions. In this study, six different configurations of screen printed conductive ink electrodes have been evaluated with respect to electrode potential variations and electrode impedance. METHODS: The electrode surfaces consisted of a Ag/AgCl-based ink with a conduction line of carbon or Ag-based ink underneath. On top, a lacquer layer was used to define the electrode area and to cover the conduction lines. Measurements were performed under well-defined electro-chemical conditions in a physiologic saline solution. RESULTS: The results showed that all printed electrodes were stable and have a very small potential drift (less than 3 mV/30 min). The contribution to the total impedance was 2% of the set maximal allowed impedance (maximally 1 kΩ at 50 Hz), assuming common values of input impedance and common mode rejection ratio of a regular amplifier. CONCLUSION: Our conclusions are that the tested electrodes show satisfying properties to be used as elements in a skin electrode design that could be suitable for further investigations by applying the electrodes on the skin.


Asunto(s)
Electrocardiografía/instrumentación , Impresión , Impedancia Eléctrica , Electrodos , Humanos , Plata , Compuestos de Plata , Piel , Propiedades de Superficie
4.
Biochim Biophys Acta ; 1830(9): 4398-401, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23220698

RESUMEN

BACKGROUND: In biosensors with a fluid analyte, the integration of a microfluidic system, which guides the analyte into the sensing area, is critical. Quicker and economical ways to build up microfluidic systems will make point of care diagnostics viable. Printing is a low-cost technology that is increasingly used in emerging organic and flexible electronics and biosensors. In this paper, we present printed fluidic systems on flexible substrates made with pressure sensitive adhesive materials. METHODS: Printable pressure sensitive adhesive materials have been used for making microfluidic systems. Flexible substrates have been used, and two types of adhesive materials, one thermally dried and another UV curable, have been tested. Top sealing layer was laminated directly on top of the printed microfluidic structure. Flow tests were done with deionized water. RESULTS: Flow tests with deionized water show that both adhesive materials are suitable for capillary flow driven fluidic devices. Flow test using water as dielectric material was also done successfully on a printed electrolyte gated organic field effect transistor with an integrated microfluidic system. GENERAL SIGNIFICANCE: Due to its ease of process and low cost, printed microfluidic system is believed to find more applications in biosensing devices. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Impresión/instrumentación , Adhesivos , Electrónica/instrumentación , Electrónica/métodos , Presión , Impresión/métodos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...