Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Work Expo Health ; 62(7): 828-839, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29931293

RESUMEN

The risk among asphalt workers of developing adverse health effects may increase due to their occupational exposure. One area of special concern arises when rubber granules are mixed into bitumen to enhance asphalt properties. This research characterizes and compares bitumen and rubber bitumen regarding the emissions of and workers' exposure to particulates, polycyclic aromatic hydrocarbons (PAHs) and benzothiazole. A laboratory and a field study were carried out. In the laboratory, two types of bitumen, one with and one without rubber, were heated up to two temperatures (140°C and 160°C). The concentrations and chemical compositions of the emissions were determined. In the field at asphalt work sites, both emissions and worker exposure measurements were performed. The methods applied included direct-reading sampling techniques next to the asphalt work area and personal sampling techniques on asphalt workers. The exposure measurements on asphalt workers for respirable dust, total dust, particle number and mass, and total PAH concentrations showed similar concentrations when both standard and rubber bitumen were used. The asphalt-surfacing machine operators were the workers with the highest observed exposure followed by the screed operators and roller drivers. Both laboratory and field measurements showed higher concentrations of benzothiazole when rubber bitumen was used, up to 7.5 times higher in the laboratory. The levels of naphthalene, benzo(a)pyrene, and total particles were lower for both types compared with the Swedish occupational exposure limits, 8-h time weighted average concentrations. Benzo(a)pyrene exceeded however the health-based guideline value given by the WHO for both types of bitumen. The study concludes that several air pollutants such as benzothiazole and PAHs are emitted into the air during asphalt work, but it is not evident if exposure to rubber bitumen possesses a higher risk than exposure to standard bitumen in terms of asphalt worker exposure.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos/análisis , Exposición Profesional/análisis , Goma/análisis , Benzotiazoles/análisis , Polvo , Humanos , Hidrocarburos/química , Exposición por Inhalación/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Goma/química
2.
Environ Sci Technol ; 48(11): 6300-8, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24798545

RESUMEN

In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density of particles in central Copenhagen, in wintertime. The results are related to particle origin, morphology, and aging. Using a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM), we determined that particles in the diameter range of 50-400 nm were of two groups: porous soot aggregates and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long-range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate volatile mass fraction was ∼10%. For the dense particles, the volatile mass fraction varied from ∼80% to nearly 100%.


Asunto(s)
Aerosoles/química , Ciudades , Material Particulado/química , Emisiones de Vehículos/análisis , Aerosoles/análisis , Dinamarca , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Material Particulado/análisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...