Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32902275

RESUMEN

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Asunto(s)
Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pirazoles/farmacología , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Semivida , Humanos , Ratones , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Am J Pharm Educ ; 84(7): ajpe7281, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32773821

RESUMEN

Objective. To characterize shared governance in US schools and colleges of pharmacy and recommend best practices to promote faculty engagement and satisfaction. Findings. The literature review revealed only one study on governance in a pharmacy school and some data from an AACP Faculty Survey. Of the 926 faculty members who responded to the survey, the majority were satisfied or very satisfied with faculty governance (64%) and the level of input into faculty governance (63%) at their school. Faculty members in administrative positions and those at public institutions were more satisfied with governance. The forum resulted in the development of five themes: establish a clear vision of governance in all areas; ensure that faculty members are aware of their roles and responsibilities within the governance structure; ensure faculty members are able to join committees of interest; recognize and reward faculty contributions to governance; and involve all full-time faculty members in governance, regardless of their tenure status. Summary. Establishing shared governance within a school or college of pharmacy impacts overall faculty satisfaction and potentially faculty retention.


Asunto(s)
Educación en Farmacia/organización & administración , Farmacia/organización & administración , Facultades de Farmacia/organización & administración , Docentes de Farmacia/organización & administración , Humanos , Encuestas y Cuestionarios , Estados Unidos
3.
Eur J Nucl Med Mol Imaging ; 47(12): 2856-2865, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32291511

RESUMEN

PURPOSE: Atherosclerotic plaque development and progression signifies a complex inflammatory disease mediated by a multitude of proinflammatory leukocyte subsets. Using single photon emission computed tomography (SPECT) coupled with computed tomography (CT), this study tested a new dual-isotope acquisition protocol to assess each radiotracer's capability to identify plaque phenotype and inflammation levels pertaining to leukocytes expressing leukocyte function-associated antigen-1 (LFA-1) and the leukocyte subset of proinflammatory macrophages expressing somatostatin receptor subtype-2 (SST2). Individual radiotracer uptake was quantified and the presence of corresponding immunohistological cell markers was assessed. METHODS: Human symptomatic carotid plaque segments were obtained from endarterectomy. Segments were incubated in dual-isotope radiotracers [111In]In-DOTA-butylamino-NorBIRT ([111In]In-Danbirt) and [99mTc]Tc-[N0-14,Asp0,Tyr3]-octreotate ([99mTc]Tc-Demotate 2) before scanning with SPECT/CT. Plaque phenotype was classified as pathological intimal thickening, fibrous cap atheroma or fibrocalcific using histology sections based on distinct morphological characteristics. Plaque segments were subsequently immuno-stained with LFA-1 and SST2 and quantified in terms of positive area fraction and compared against the corresponding SPECT images. RESULTS: Focal uptake of co-localising dual-radiotracers identified the heterogeneous distribution of inflamed regions in the plaques which co-localised with positive immuno-stained regions of LFA-1 and SST2. [111In]In-Danbirt and [99mTc]Tc-Demotate 2 uptake demonstrated a significant positive correlation (r = 0.651; p = 0.001). Fibrous cap atheroma plaque phenotype correlated with the highest [111In]In-Danbirt and [99mTc]Tc-Demotate 2 uptake compared with fibrocalcific plaques and pathological intimal thickening phenotypes, in line with the immunohistological analyses. CONCLUSION: A dual-isotope acquisition protocol permits the imaging of multiple leukocyte subsets and the pro-inflammatory macrophages simultaneously in atherosclerotic plaque tissue. [111In]In-Danbirt may have added value for assessing the total inflammation levels in atherosclerotic plaques in addition to classifying plaque phenotype.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Aterosclerosis/diagnóstico por imagen , Humanos , Isótopos , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada de Emisión de Fotón Único
4.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049011

RESUMEN

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Asunto(s)
Quimioterapia Combinada/métodos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Neoplasias/inmunología , Animales , Humanos , Ratones , Neoplasias/tratamiento farmacológico
5.
Brain Behav Immun ; 87: 339-358, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31918004

RESUMEN

Previous reports show that moderate prenatal alcohol exposure (PAE) poses a risk factor for developing neuropathic pain following adult-onset peripheral nerve injury in male rats. Recently, evidence suggests that immune-related mechanisms underlying neuropathic pain in females are different compared to males despite the fact that both sexes develop neuropathy of similar magnitude and duration following chronic constriction injury (CCI) of the sciatic nerve. Data suggest that the actions of peripheral T cells play a greater role in mediating neuropathy in females. The goal of the current study is to identify specificity of immune cell and cytokine changes between PAE and non-PAE neuropathic females by utilizing a well-characterized rodent model of sciatic nerve damage, in an effort to unmask unique signatures of immune-related factors underlying the risk of neuropathy from PAE. Cytokines typically associated with myeloid cell actions such as interleukin (IL)-1ß, tumor necrosis factor (TNF), IL-6, IL-4 and IL-10 as well as the neutrophil chemoattractant CXCL1, are examined. In addition, transcription factors and cytokines associated with various differentiated T cell subtypes are examined (anti-inflammatory FOXP3, proinflammatory IL-17A, IL-21, ROR-γt, interferon (IFN)-γ and T-bet). Lymphocyte function associated antigen 1 (LFA-1) is an adhesion molecule expressed on peripheral immune cells including T cells, and regulates T cell activation and extravasation into inflamed tissue regions. A potential therapeutic approach was explored with the goal of controlling proinflammatory responses in neuroanatomical regions critical for CCI-induced allodynia by blocking LFA-1 actions using BIRT377. The data show profound development of hindpaw allodynia in adult non-PAE control females following standard CCI, but not following minor CCI, while minor CCI generated allodynia in PAE females. The data also show substantial increases in T cell-associated proinflammatory cytokine mRNA and proteins, along with evidence of augmented myeloid/glial activation (mRNA) and induction of myeloid/glial-related proinflammatory cytokines, CCL2, IL-1ß and TNF in discrete regions along the pain pathway (damaged sciatic nerve, dorsal root ganglia; DRG, and spinal cord). Interestingly, the characteristic anti-inflammatory IL-10 protein response to nerve damage is blunted in neuropathic PAE females. Moreover, T cell profiles are predominantly proinflammatory in neuropathic Sac and PAE females, augmented levels of Th17-specific proinflammatory cytokines IL-17A and IL-21, as well as the Th1-specific factor, T-bet, are observed. Similarly, the expression of RORγt, a critical transcription factor for Th17 cells, is detected in the spinal cord of neuropathic females. Blocking peripheral LFA-1 actions with intravenous (i.v.) BIRT377 reverses allodynia in Sac and PAE rats, dampens myeloid (IL-1ß, TNF, CXCL1)- and T cell-associated proinflammatory factors (IL-17A and RORγt) and spinal glial activation. Moreover, i.v. BIRT377 treatment reverses the blunted IL-10 response to CCI observed only in neuropathic PAE rats and elevates FOXP3 in pain-reversed Sac rats. Unexpectedly, intrathecal BIRT377 treatment is unable to alter allodynia in either Sac or PAE neuropathic females. Together, these data provide evidence that: 1) fully differentiated proinflammatory Th17 cells recruited at the sciatic nerve, DRGs and lumbar spinal cord may interact with the local environment to shape the immune responses underlying neuropathy in female rats, and, 2) PAE primes peripheral and spinal immune responses in adult females. PAE is a risk factor in females for developing peripheral neuropathy after minor nerve injury.


Asunto(s)
Neuralgia , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Hiperalgesia , Antígeno-1 Asociado a Función de Linfocito , Masculino , Embarazo , Ratas , Médula Espinal
6.
Artículo en Inglés | MEDLINE | ID: mdl-31763376

RESUMEN

AIM: The majority of preclinical studies investigating aberrant glial-neuroimmune actions underlying neuropathic pain have focused on male rodent models. Recently, studies have shown peripheral immune cells play a more prominent role than glial cells in mediating pathological pain in females. Here, we compared the onset and duration of allodynia in males and females, and the anti-allodynic action of a potentially novel therapeutic drug (BIRT377) that not only antagonizes the action of lymphocyte function-associated antigen-1 (LFA-1) to reduce cell migration in the periphery, but may also directly alter the cellular inflammatory bias. METHODS: Male and female mice were subjected to peripheral nerve injury chronic constriction injury (CCI) applying two methods, using either 4-0 or 5-0 chromic gut suture material, to examine potential sex differences in the onset, magnitude and duration of allodynia. Hindpaw sensitivity before and after CCI and application of intravenous BIRT377 was assessed. Peripheral and spinal tissues were analyzed for protein (multiplex electrochemiluminescence technology) and mRNA expression (quantitative real-time PCR). The phenotype of peripheral T cells was determined using flow cytometry. RESULTS: Sex differences in proinflammatory CCL2 and IL-1ß and the anti-inflammatory IL-10 were observed from a set of cytokines analyzed. A profound proinflammatory T cell (Th17) response in the periphery and spinal cord was also observed in neuropathic females. BIRT377 reversed pain, reduced IL-1ß and TNF, and increased IL-10 and transforming growth factor (TGF)-ß1, also an anti-inflammatory cytokine, in both sexes. However, female-derived T cell cytokines are transcriptionally regulated by BIRT377, as demonstrated by reducing proinflammatory IL-17A production with concurrent increases in IL-10, TGF-ß1 and the anti-inflammatory regulatory T cell-related factor, FOXP3. CONCLUSION: This study supports that divergent peripheral immune and neuroimmune responses during neuropathy exists between males and females. Moreover, the modulatory actions of BIRT377 on T cells during neuropathy are predominantly specific to females. These data highlight the necessity of including both sexes for studying drug efficacy and mechanisms of action in preclinical studies and clinical trials.

7.
Contrast Media Mol Imaging ; 2018: 6508724, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538613

RESUMEN

Atherosclerosis-related morbidity and mortality remain a global concern. Atherosclerotic disease follows a slow and silent progression, and the transition from early-stage lesions to vulnerable plaques remains difficult to diagnose. Inflammation is a key component of the development of atherosclerotic plaque and consequent life-threatening complications. This study assessed 111In-DANBIRT as an in vivo, noninvasive SPECT/CT imaging probe targeting an inflammatory marker, Lymphocyte Function Associated Antigen-1 (LFA-1), in atherosclerotic plaques. Methods. Selective binding of 111In-DANBIRT was assessed using Sprague-Dawley rats exposed to filtered air and ozone (1 ppm) by inhalation for 4 hours to induce a circulating leukocytosis and neutrophilia in peripheral blood. After 24 hours, whole blood was collected and incubated with radiolabeled DANBIRT (68Ga-DANBIRT and 111In-DANBIRT). Isolated cell component smeared slides using cytospin technique were stained with Wright-Giemsa stain. Apolipoprotein E-deficient (apoE-/-) mice were fed either a normal diet or a high-fat diet (HFD) for 8 weeks. Longitudinal SPECT/CT imaging was performed 3 hours after administration at baseline, 4, and 8 weeks of HFD diet, followed by tissue harvesting for biodistribution, serum lipid analysis, and histology. 3D autoradiography was performed in both groups 24 hours after administration of 111In-DANBIRT. Results. Increased specific uptake of radiolabeled DANBIRT by neutrophils in the ozone-exposed group was evidenced by the acute immune response due to 4-hour ozone exposure. Molecular imaging performed at 3 hours using SPECT/CT imaging evidenced an exponential longitudinal increase in 111In-DANBIRT uptake in atherosclerosis lesions in HFD-fed mice compared to normal-diet-fed mice. Such results were consistent with increased immune response to vascular injury in cardiovascular and also immune tissues, correlated by 24 hours after administration of 3D autoradiography. Histologic analysis confirmed atherosclerotic disease progression with an increased vascular lesion area in HFD-fed mice compared to normal-diet-fed mice. Conclusion. 111In-DANBIRT is a promising molecular imaging probe to assess inflammation in evolving atheroma and atherosclerotic plaque.


Asunto(s)
Aterosclerosis/patología , Radioisótopos de Indio , Inflamación/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Imagen Molecular/métodos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Ozono/farmacología , Unión Proteica , Radiofármacos , Ratas , Ratas Sprague-Dawley
8.
Appl Radiat Isot ; 140: 333-341, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30138815

RESUMEN

In the present study, the effect of radiolabeling conditions on radiolabeling efficiency and achievable specific activity of a DOTA-conjugated highly-lipophilic peptide containing three disulfide cyclization bonds was examined. The peptide is designed to bind specifically (with high affinity) to cell-surface receptor guanylyl cyclase C (GCC), which is universally expressed by colorectal cancer cells. The effect of systematic variation of chemical parameters pH, mass of peptide, acetate buffer concentration (ionic strength), and inclusion of ethanol in the radiolabeling reaction vessel on achievable specific activity and labeling efficiency was examined. In addition, a unique approach to acetone-based elution of 68Ga from an initial cation-exchange pre-concentration column is introduced, which improved radiochemical yield and radiochemical purity. For the evaluation of the acetone-based method, two different post-radiolabeling reverse-phase (C18) approaches to purify the final radiolabeled peptide were tested. These results revealed the potential for peptide degradation via the cleavage of disulfide cyclization bonds to form free thiols when using one of these C18 cartridges. The final optimized procedure enabled radiolabeling efficiency of greater than 99% and specific activity greater than 35 MBq/nmole in less than 30 min. The optimized parameters were amenable to the use of an automated 68Ge/68Ga generator and fluid-handling system for clinical production of the GCC receptor-specific [68Ga]DOTA-MLN6907 peptide. The chemical characteristics of individual peptides govern the most appropriate radiolabeling conditions for the preparation of radiopharmaceuticals.


Asunto(s)
Radioisótopos de Galio/química , Compuestos Heterocíclicos con 1 Anillo/química , Péptidos/química , Péptidos/síntesis química , Radiofármacos/química , Radiofármacos/síntesis química , Quelantes/química , Neoplasias Colorrectales/diagnóstico por imagen , Humanos , Péptidos/farmacocinética , Tomografía de Emisión de Positrones , Radioquímica/métodos , Radiofármacos/farmacocinética , Receptores de Enterotoxina/metabolismo
9.
Target Oncol ; 13(2): 189-203, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29423595

RESUMEN

Alpha-emitters are radionuclides that decay through the emission of high linear energy transfer α-particles and possess favorable pharmacologic profiles for cancer treatment. When coupled with monoclonal antibodies, peptides, small molecules, or nanoparticles, the excellent cytotoxic capability of α-particle emissions has generated a strong interest in exploring targeted α-therapy in the pre-clinical setting and more recently in clinical trials in oncology. Multiple obstacles have been overcome by researchers and clinicians to accelerate the development of targeted α-therapies, especially with the recent improvement in isotope production and purification, but also with the development of innovative strategies for optimized targeting. Numerous studies have demonstrated the in vitro and in vivo efficacy of the targeted α-therapy. Radium-223 (223Ra) dichloride (Xofigo®) is the first α-emitter to have received FDA approval for the treatment of prostate cancer with metastatic bone lesions. There is a significant increase in the number of clinical trials in oncology using several radionuclides such as Actinium-225 (225Ac), Bismuth-213 (213Bi), Lead-212 (212Pb), Astatine (211At) or Radium-223 (223Ra) assessing their safety and preliminary activity. This review will cover their therapeutic application as well as summarize the investigations that provide the foundation for further clinical development.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias/terapia , Humanos
10.
EJNMMI Radiopharm Chem ; 1(1): 9, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29564386

RESUMEN

BACKGROUND: 213Bismuth (213Bi, T1/2 = 45.6 min) is one of the most frequently used α-emitters in cancer research. High specific activity radioligands are required for peptide receptor radionuclide therapy. The use of generators containing less than 222 MBq 225Ac (actinium), due to limited availability and the high cost to produce large-scale 225Ac/213Bi generators, might complicate in vitro and in vivo applications though.Here we present optimized labelling conditions of a DOTA-peptide with an 225Ac/213Bi generator (< 222 MBq) for preclinical applications using DOTA-Tyr3-octreotate (DOTATATE), a somatostatin analogue. The following labelling conditions of DOTATATE with 213Bi were investigated; peptide mass was varied from 1.7 to 7.0 nmol, concentration of TRIS buffer from 0.15 mol.L-1 to 0.34 mol.L-1, and ascorbic acid from 0 to 71 mmol.L-1 in 800 µL. All reactions were performed at 95 °C for 5 min. After incubation, DTPA (50 nmol) was added to stop the labelling reaction. Besides optimizing the labelling conditions, incorporation yield was determined by ITLC-SG and radiochemical purity (RCP) was monitored by RP-HPLC up to 120 min after labelling. Dosimetry studies in the reaction vial were performed using Monte Carlo and in vitro clonogenic assay was performed with a rat pancreatic tumour cell line, CA20948. RESULTS: At least 3.5 nmol DOTATATE was required to obtain incorporation ≥ 99 % with 100 MBq 213Bi (at optimized pH conditions, pH 8.3 with 0.15 mol.L-1 TRIS) in a reaction volume of 800 µL. The cumulative absorbed dose in the reaction vial was 230 Gy/100 MBq in 30 min. A minimal final concentration of 0.9 mmol.L-1 ascorbic acid was required for ~100 MBq (t = 0) to minimize radiation damage of DOTATATE. The osmolarity was decreased to 0.45 Osmol/L.Under optimized labelling conditions, 213Bi-DOTATATE remained stable up to 2 h after labelling, RCP was ≥ 85 %. In vitro showed a negative correlation between ascorbic acid concentration and cell survival. CONCLUSION: 213Bismuth-DOTA-peptide labelling conditions including peptide amount, quencher and pH were optimized to meet the requirements needed for preclinical applications in peptide receptor radionuclide therapy.

11.
PLoS One ; 11(12): e0169107, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28036366

RESUMEN

Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico , Simportadores/genética , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Células A549 , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Yoduros/metabolismo , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Pertecnetato de Sodio Tc 99m/metabolismo , Simportadores/metabolismo , Trasplante Heterólogo , Carga Tumoral/genética
12.
EJNMMI Res ; 6(1): 83, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27873240

RESUMEN

BACKGROUND: Targeted alpha therapy (TAT) offers advantages over current ß-emitting conjugates for peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors. PRRT with 177Lu-DOTATATE or 90Y-DOTATOC has shown dose-limiting nephrotoxicity due to radiopeptide retention in the proximal tubules. Pharmacological protection can reduce renal uptake of radiopeptides, e.g., positively charged amino acids, to saturate in the proximal tubules, thereby enabling higher radioactivity to be safely administered. The aim of this preclinical study was to evaluate the therapeutic effect of 213Bi-DOTATATE with and without renal protection using L-lysine in mice. Tumor uptake and kinetics as a function of injected mass of peptide (range 0.03-3 nmol) were investigated using 111In-DOTATATE. These results allowed estimation of the mean radiation absorbed tumor dose for 213Bi-DOTATATE. Pharmacokinetics and dosimetry of 213Bi-DOTATATE was determined in mice, in combination with renal protection. A dose escalation study with 213Bi-DOTATATE was performed to determine the maximum tolerated dose (MTD) with and without pre-administration of L-lysine as for renal protection. Neutrophil gelatinase-associated lipocalin (NGAL) served as renal biomarker to determine kidney injury. RESULTS: The maximum mean radiation absorbed tumor dose occurred at 0.03 nmol and the minimum at 3 nmol. Similar mean radiation absorbed tumor doses were determined for 0.1 and 0.3 nmol with a mean radiation absorbed dose of approximately 0.5 Gy/MBq 213Bi-DOTATATE. The optimal mass of injected peptide was found to be 0.3 nmol. Tumor uptake was similar for 111In-DOTATATE and 213Bi-DOTATATE at 0.3 nmol peptide. Lysine reduced the renal uptake of 213Bi-DOTATATE by 50% with no effect on the tumor uptake. The MTD was <13.0 ± 1.6 MBq in absence of L-lysine and 21.7 ± 1.9 MBq with L-lysine renal protection, both imparting an LD50 mean renal radiation absorbed dose of 20 Gy. A correlation was found between the amount of injected radioactivity and NGAL levels. CONCLUSIONS: The therapeutic potential of 213Bi-DOTATATE was illustrated by significantly decreased tumor burden and improved overall survival. Renal protection with L-lysine immediately prior to TAT with 213Bi-DOTATATE prolonged survival providing substantial evidence for pharmacological nephron blockade to mitigate nephrotoxicity.

13.
FASEB J ; 30(5): 1880-91, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26864854

RESUMEN

Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and ß-amyloid 42 (Aß42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)(-/-) mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3 Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung-brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.-Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors.


Asunto(s)
Contaminación del Aire/efectos adversos , Encéfalo/efectos de los fármacos , Enfermedades Pulmonares/inducido químicamente , Pulmón/efectos de los fármacos , Microglía/efectos de los fármacos , Ozono/toxicidad , Animales , Anticuerpos , Encéfalo/metabolismo , Línea Celular , Inflamación/inducido químicamente , Inflamación/metabolismo , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Antígeno de Macrófago-1/inmunología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas
14.
Mol Cancer Res ; 12(11): 1635-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25030373

RESUMEN

UNLABELLED: Our understanding of estrogen (17ß-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed (99m)Tc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of (99m)Tc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4-1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation (99m)Tc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery. IMPLICATIONS: These studies provide a molecular basis to evaluate GPER expression and function as an ER through in vivo imaging.


Asunto(s)
Diagnóstico por Imagen , Estrógenos/metabolismo , Neoplasias/diagnóstico , Receptores de Estrógenos/metabolismo , Coloración y Etiquetado , Tecnecio , Animales , Unión Competitiva , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Ligandos , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Ovariectomía , Quinolonas/química , Factores de Tiempo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
15.
PLoS One ; 9(5): e97084, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24811453

RESUMEN

Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension.


Asunto(s)
Adaptación Fisiológica , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Proteínas Musculares/metabolismo , Fenotipo , Ubiquitina-Proteína Ligasas/metabolismo , Remodelación Ventricular , Animales , Hipoxia de la Célula , Regulación de la Expresión Génica , Hematócrito , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/complicaciones , Ratones , Proteínas Musculares/deficiencia , Músculo Esquelético/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Flujo Sanguíneo Regional , Factores de Tiempo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/deficiencia
17.
Ann Allergy Asthma Immunol ; 108(3): 195-200, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22374204

RESUMEN

BACKGROUND: Fixed combination fluticasone-salmeterol is the most used anti-inflammatory asthma treatment in North America, yet no studies report the actual respiratory tract dose or the distribution of drug within the lungs. Inflammation due to asthma affects all airways of the lungs, both large and small. Inhaled steroid delivery to airways results from a range of drug particle sizes, with emphasis on smaller drug particles capable of reaching the peripheral airways. Previous studies suggested that smaller drug particles increase pulmonary deposition and decrease oropharyngeal deposition. OBJECTIVES: To characterize the dose of fluticasone-salmeterol hydrofluoroalkane-134a (HFA) (particle size, 2.7 µm) delivered to asthmatic patients and examine the drug distribution within the lungs. The results were compared with the inhalation delivery of HFA beclomethasone (particle size, 0.7 µm). METHODS: A crossover study was conducted in asthmatic patients with commercial formulations of fluticasone-salmeterol and HFA beclomethasone radiolabeled with technetium Tc 99m. Deposition was measured using single-photon emission computed tomography/computed tomography gamma scintigraphy. RESULTS: Two-dimensional planar image analysis indicated that 58% of the HFA beclomethasone and 16% of the fluticasone-salmeterol HFA were deposited in the patient's lungs. The oropharyngeal cavity and gut analyses indicated that 77% of the fluticasone-salmeterol HFA was deposited in the oropharynx compared with 35% of the HFA beclomethasone. CONCLUSIONS: The decreased peripheral airway deposition and increased oropharyngeal deposition of fluticasone-salmeterol HFA was a result of its larger particle size. The smaller particle size of HFA beclomethasone allowed a greater proportion of lung deposition with a concomitant decrease in oropharyngeal deposition.


Asunto(s)
Albuterol/análogos & derivados , Androstadienos/administración & dosificación , Antiasmáticos/administración & dosificación , Asma/tratamiento farmacológico , Beclometasona/administración & dosificación , Pulmón/efectos de los fármacos , Administración por Inhalación , Propelentes de Aerosoles , Albuterol/administración & dosificación , Albuterol/farmacocinética , Albuterol/uso terapéutico , Androstadienos/farmacocinética , Androstadienos/uso terapéutico , Antiasmáticos/farmacocinética , Asma/diagnóstico por imagen , Beclometasona/farmacocinética , Beclometasona/uso terapéutico , Estudios Cruzados , Combinación de Medicamentos , Combinación Fluticasona-Salmeterol , Humanos , Hidrocarburos Fluorados , Pulmón/diagnóstico por imagen , Tamaño de la Partícula , Cintigrafía
18.
Inhal Toxicol ; 24(1): 27-35, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22145784

RESUMEN

CONTEXT: The current data analysis tools in nuclear medicine have not been used to evaluate intra organ regional deposition patterns of pharmaceutical aerosols in preclinical species. OBJECTIVE: This study evaluates aerosol deposition patterns as a function of particle size in rats and mice using novel image analysis techniques. MATERIALS AND METHOD: Mice and rats were exposed to radiolabeled polydisperse aerosols at 0.5, 1.0, 3.0, and 5.0 µm MMAD followed by SPECT/CT imaging for deposition analysis. Images were quantified for both macro deposition patterns and regional deposition analysis using the LRRI-developed Onion Model. RESULTS: The deposition fraction in both rats and mice was shown to increase as the particle size decreased, with greater lung deposition in rats at all particle sizes. The Onion Model indicated that the smaller particle sizes resulted in increased peripheral deposition. DISCUSSION: These data contrast the commonly used 10% deposition fraction for all aerosols between 1.0 and 5.0 µm and indicate that lung deposition fraction in this range does change with particle size. When compared to historical data, the 1.0, 3.0, and 5.0 µm particles result in similar lung deposition fractions; however, the 0.5 µm lung deposition fraction is markedly different. This is probably caused by the current aerosols that were polydisperse to reflect current pharmaceutical aerosols, while the historical data were generated with monodisperse aerosols. CONCLUSION: The deposition patterns of aerosols between 0.5 and 5.0 µm showed an increase in both overall and peripheral deposition as the particle size decreased. The Onion Model allows a more complex analysis of regional deposition in preclinical models.


Asunto(s)
Pulmón/metabolismo , Modelos Biológicos , Material Particulado/farmacocinética , Administración por Inhalación , Aerosoles , Animales , Pulmón/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Imagen Multimodal , Tamaño de la Partícula , Material Particulado/administración & dosificación , Tomografía de Emisión de Positrones , Ratas , Ratas Endogámicas F344 , Tecnecio , Tomografía Computarizada por Rayos X
20.
J Nucl Med ; 52(4): 650-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21421709

RESUMEN

Molecular imaging is the visualization, characterization, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems (1). It comprises an emerging set of technologies that builds on advances in imaging procedures (e.g., PET, SPECT, MRI, ultrasound, optical, and photoacoustic), improved understanding of biology, and the development of molecularly targeted agents. These continuously expanding sets of imaging methods are often used in combination, and advances in data acquisition and analyses facilitate a more complete understanding of biology. Molecular imaging aims to improve our understanding of mammalian biology and lead to advances in patient care by providing targeted therapies that will enable personalized medicine and the imaging tools to assess outcome. Implementation of these new technologies in clinical care has many educational, technical, and regulatory challenges that must be overcome before molecular imaging reaches its full potential. The impact of molecular imaging has been significant in several disciplines, because it represents a paradigm shift in how scientists and clinicians can observe biology in real time and in a relatively noninvasive manner to enable the power of repeated measures in living organisms.


Asunto(s)
Curriculum , Imagen Molecular , Medicina Nuclear/educación , Biología Celular/educación , Competencia Clínica , Educación Basada en Competencias , Objetivos , Matemática/educación , Modelos Biológicos , Biología Molecular/educación , Farmacología/educación , Física/educación , Medicina de Precisión , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...