Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacol Rep ; 41(2): 207-214, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33955711

RESUMEN

AIM: Attention is a goal-directed cognitive process that facilitates the detection of task-relevant sensory stimuli from dynamic environments. Anterior cingulate cortical area (ACA) is known to play a key role in attentional behavior, but the specific circuits mediating attention remain largely unknown. As ACA modulates sensory processing in the visual cortex (VIS), we aim to test a hypothesis that frontal top-down neurons projecting from ACA to VIS (ACAVIS ) contributes to visual attention behavior through chemogenetic approach. METHODS: Adult, male mice were trained to perform the 5-choice serial reaction time task (5CSRTT) using a touchscreen system. An intersectional viral approach was used to selectively express inhibitory designer receptors exclusively activated by designer drugs (iDREADD) or a static fluorophore (mCherry) in ACAVIS neurons. Mice received counterbalanced injections (i.p.) of the iDREADD ligand (clozapine-N-oxide; CNO) or vehicle (saline) prior to 5CSRTT testing. Finally, mice underwent progressive ratio testing and open field testing following CNO or saline administration. RESULTS: Chemogenetic suppression of ACAVIS neuron activity decreased correct task performance during the 5CSRTT mainly driven by an increase in omission and a trending decrease in accuracy with no change in behavioral outcomes associated with motivation, impulsivity, or compulsivity. Breakpoint during the progressive ratio task and distance moved in the open field test were unaffected by ACAVIS neuron suppression. CNO administration itself had no effect on task performance in mCherry-expressing mice. CONCLUSION: These results identify long-range frontal-sensory ACAVIS projection neurons as a key enactor of top-down attentional behavior and may serve as a beneficial therapeutic target.


Asunto(s)
Giro del Cíngulo , Corteza Visual , Animales , Masculino , Ratones , Neuronas , Tiempo de Reacción
2.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33674307

RESUMEN

Cognitive function depends on frontal cortex development; however, the mechanisms driving this process are poorly understood. Here, we identify that dynamic regulation of the nicotinic cholinergic system is a key driver of attentional circuit maturation associated with top-down frontal neurons projecting to visual cortex. The top-down neurons receive robust cholinergic inputs, but their nicotinic tone decreases following adolescence by increasing expression of a nicotinic brake, Lynx1 Lynx1 shifts a balance between local and long-range inputs onto top-down frontal neurons following adolescence and promotes the establishment of attentional behavior in adulthood. This key maturational process is disrupted in a mouse model of fragile X syndrome but was rescued by a suppression of nicotinic tone through the introduction of Lynx1 in top-down projections. Nicotinic signaling may serve as a target to rebalance local/long-range balance and treat cognitive deficits in neurodevelopmental disorders.


Asunto(s)
Nicotina , Corteza Visual , Animales , Atención/fisiología , Colinérgicos , Ratones , Neuronas/fisiología , Corteza Visual/fisiología
3.
Neuron ; 109(7): 1202-1213.e5, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33609483

RESUMEN

The frontal cortex, especially the anterior cingulate cortex area (ACA), is essential for exerting cognitive control after errors, but the mechanisms that enable modulation of attention to improve performance after errors are poorly understood. Here we demonstrate that during a mouse visual attention task, ACA neurons projecting to the visual cortex (VIS; ACAVIS neurons) are recruited selectively by recent errors. Optogenetic manipulations of this pathway collectively support the model that rhythmic modulation of ACAVIS neurons in anticipation of visual stimuli is crucial for adjusting performance following errors. 30-Hz optogenetic stimulation of ACAVIS neurons in anesthetized mice recapitulates the increased gamma and reduced theta VIS oscillatory changes that are associated with endogenous post-error performance during behavior and subsequently increased visually evoked spiking, a hallmark feature of visual attention. This frontal sensory neural circuit links error monitoring with implementing adjustments of attention to guide behavioral adaptation, pointing to a circuit-based mechanism for promoting cognitive control.


Asunto(s)
Atención/fisiología , Lóbulo Frontal/fisiología , Reclutamiento Neurofisiológico/fisiología , Animales , Conducta Animal , Electroencefalografía , Fenómenos Electrofisiológicos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Corteza Somatosensorial/fisiología , Corteza Visual/fisiología
4.
Front Neurosci ; 15: 775256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087372

RESUMEN

Top-down attention is a dynamic cognitive process that facilitates the detection of the task-relevant stimuli from our complex sensory environment. A neural mechanism capable of deployment under specific task-demand conditions would be crucial to efficiently control attentional processes and improve promote goal-directed attention performance during fluctuating attentional demand. Previous studies have shown that frontal top-down neurons projecting from the anterior cingulate area (ACA) to the visual cortex (VIS; ACAVIS) are required for visual attentional behavior during the 5-choice serial reaction time task (5CSRTT) in mice. However, it is unknown whether the contribution of these projecting neurons is dependent on the extent of task demand. Here, we first examined how behavior outcomes depend on the number of locations for mice to pay attention and touch for successful performance, and found that the 2-choice serial reaction time task (2CSRTT) is less task demanding than the 5CSRTT. We then employed optogenetics to demonstrate that suppression ACAVIS projections immediately before stimulus presentation has no effect during the 2CSRTT in contrast to the impaired performance during the 5CSRTT. These results suggest that ACAVIS projections are necessary when task demand is high, but once a task demand is lowered, ACAVIS neuron activity becomes dispensable to adjust attentional performance. These findings support a model that the frontal-sensory ACAVIS projection regulates visual attention behavior during specific high task demand conditions, pointing to a flexible circuit-based mechanism for promoting attentional behavior.

5.
Nat Neurosci ; 23(10): 1240-1252, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32868932

RESUMEN

Juvenile social isolation reduces sociability in adulthood, but the underlying neural circuit mechanisms are poorly understood. We found that, in male mice, 2 weeks of social isolation immediately following weaning leads to a failure to activate medial prefrontal cortex neurons projecting to the posterior paraventricular thalamus (mPFC→pPVT) during social exposure in adulthood. Chemogenetic or optogenetic suppression of mPFC→pPVT activity in adulthood was sufficient to induce sociability deficits without affecting anxiety-related behaviors or preference toward rewarding food. Juvenile isolation led to both reduced excitability of mPFC→pPVT neurons and increased inhibitory input drive from low-threshold-spiking somatostatin interneurons in adulthood, suggesting a circuit mechanism underlying sociability deficits. Chemogenetic or optogenetic stimulation of mPFC→pPVT neurons in adulthood could rescue the sociability deficits caused by juvenile isolation. Our study identifies a pair of specific medial prefrontal cortex excitatory and inhibitory neuron populations required for sociability that are profoundly affected by juvenile social experience.


Asunto(s)
Núcleos Talámicos de la Línea Media/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Conducta Animal , Interneuronas/fisiología , Masculino , Vías Nerviosas/fisiología , Optogenética , Aislamiento Social
6.
Nat Commun ; 11(1): 3983, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770078

RESUMEN

Frontal top-down cortical neurons projecting to sensory cortical regions are well-positioned to integrate long-range inputs with local circuitry in frontal cortex to implement top-down attentional control of sensory regions. How adolescence contributes to the maturation of top-down neurons and associated local/long-range input balance, and the establishment of attentional control is poorly understood. Here we combine projection-specific electrophysiological and rabies-mediated input mapping in mice to uncover adolescence as a developmental stage when frontal top-down neurons projecting from the anterior cingulate to visual cortex are highly functionally integrated into local excitatory circuitry and have heightened activity compared to adulthood. Chemogenetic suppression of top-down neuron activity selectively during adolescence, but not later periods, produces long-lasting visual attentional behavior deficits, and results in excessive loss of local excitatory inputs in adulthood. Our study reveals an adolescent sensitive period when top-down neurons integrate local circuits with long-range connectivity to produce attentional behavior.


Asunto(s)
Envejecimiento/fisiología , Atención/fisiología , Conducta Animal/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Channelrhodopsins/metabolismo , Giro del Cíngulo/fisiología , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Inhibición Neural/fisiología , Terminales Presinápticos/fisiología , Rabia/fisiopatología , Sinapsis/fisiología , Visión Ocular/fisiología
7.
Nat Commun ; 11(1): 1003, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081848

RESUMEN

Social isolation during the juvenile critical window is detrimental to proper functioning of the prefrontal cortex (PFC) and establishment of appropriate adult social behaviors. However, the specific circuits that undergo social experience-dependent maturation to regulate social behavior are poorly understood. We identify a specific activation pattern of parvalbumin-positive interneurons (PVIs) in dorsal-medial PFC (dmPFC) prior to an active bout, or a bout initiated by the focal mouse, but not during a passive bout when mice are explored by a stimulus mouse. Optogenetic and chemogenetic manipulation reveals that brief dmPFC-PVI activation triggers an active social approach to promote sociability. Juvenile social isolation decouples dmPFC-PVI activation from subsequent active social approach by freezing the functional maturation process of dmPFC-PVIs during the juvenile-to-adult transition. Chemogenetic activation of dmPFC-PVI activity in the adult animal mitigates juvenile isolation-induced social deficits. Therefore, social experience-dependent maturation of dmPFC-PVI is linked to long-term impacts on social behavior.


Asunto(s)
Parvalbúminas/fisiología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Interneuronas/fisiología , Relaciones Interpersonales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Modelos Psicológicos , Optogenética , Parvalbúminas/genética , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Aislamiento Social
8.
Heliyon ; 5(8): e02254, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31485508

RESUMEN

BACKGROUND: Microinjections, lesions, viral-mediated gene transfer, or designer receptors exclusively activated by designer drugs (DREADDs) can identify brain signaling pathways and their pharmacology in research animals. Genetically modified animals are used for more precise assessment of neural circuits. However, only a few of the gene-based pathway modifications are available for use in outbred rat strains. NEW METHOD: Behaviorally characterized Sprague-Dawley rats undergo tract tracing through microinjection of fluorospheres, followed by laser capture microdissection (LCM) and qPCR for detecting mRNA of pathway-associated gene products. Correlations between mRNA expression and behavior identify specific involvement of pharmacologically relevant molecules within cells of interest. Here, we examined this methodology in an impulsive choice paradigm and targeted projections from the orbital and medial prefrontal cortex. RESULTS: In this proof of concept study, we demonstrate relationships between measures of impulsive choice with distinct neurotransmitter receptor expression in cell populations from four different signaling pathways. COMPARISONS WITH EXISTING METHODS: Combining behavior, tract tracing, LCM, and gene expression profiling provides more cellular selectivity than localized lesions and DREADDs, and greater pharmacological specificity than microinjections and viral-mediated gene transfer due to targeting identified neurons. Furthermore, the assessment of inter-individual pathways provides insight into the complex nature of underlying mechanisms involved in typical and atypical behavior. CONCLUSIONS: The novel combination of behavior, tract tracing, LCM, and single gene or potential whole genome transcriptome analysis allows for a more targeted understanding of the interconnection of neural circuitry with behavior, and holds promise to identify more specific drug targets that are relevant to behavioral phenotypes.

9.
Psychopharmacology (Berl) ; 236(2): 685-698, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30411140

RESUMEN

RATIONALE: Both methylphenidate (MPH), a catecholamine reuptake blocker, and guanfacine, an alpha2A agonist, are used to treat attention-deficit hyperactivity disorder (ADHD). Childhood impulsivity, including delay discounting, is associated with increased substance use during adolescence. These effects can be mitigated by juvenile exposure to MPH, but less is known about the long-term effects of developmental exposure to guanfacine in males and females. OBJECTIVE: This study aims to determine sex differences and dose-dependent effects of juvenile exposure to MPH or guanfacine on delay-discounting and later cocaine self-administration. METHODS: The dose-dependent effects of vehicle, MPH (0.5, 1, and 2 mg/kg p.o.) or guanfacine (0.003, 0.03, and 0.3 mg/kg, i.p.) on discounting were determined in male and female Sprague-Dawley rats beginning at postnatal day (P)20. At P90, the amount, motivation, and sensitivity to cocaine following early drug exposure were determined with self-administration. RESULTS: Guanfacine, but not MPH, significantly reduced weight by 22.9 ± 4.6% in females. MPH dose dependently decreased delay discounting in both juvenile males and females, while guanfacine was only effective in males. Discounting was associated with cocaine self-administration in vehicle males (R2 = -0.4, P < 0.05) and self-administration was reduced by guanfacine treatment (0.3 mg/kg). Guanfacine significantly decreased cocaine sensitivity in both sexes. CONCLUSIONS: These data suggest that MPH is effective in reducing delay discounting in both sexes. Due to both weight loss and ineffectiveness on discounting in females, guanfacine should be used only in males to reduce delay discounting and later cocaine use.


Asunto(s)
Conducta Adictiva/psicología , Cocaína/administración & dosificación , Descuento por Demora/efectos de los fármacos , Guanfacina/farmacología , Metilfenidato/farmacología , Caracteres Sexuales , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Factores de Edad , Animales , Conducta Adictiva/inducido químicamente , Descuento por Demora/fisiología , Inhibidores de Captación de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Conducta Impulsiva/efectos de los fármacos , Conducta Impulsiva/fisiología , Masculino , Motivación/efectos de los fármacos , Motivación/fisiología , Ratas , Ratas Sprague-Dawley , Autoadministración
10.
J Psychiatr Res ; 100: 8-15, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29471082

RESUMEN

Early life adversity increases depressive behavior that emerges during adolescence. Sensitive periods have been associated with fewer GABAergic interneurons, especially parvalbumin (PV), brain derived growth factor, and its receptor, TrkB. Here, maternal separation (MS) and social isolation (ISO) were used to establish a sensitive period for anhedonic depression using the learned helplessness (LH) paradigm. Female Sprague-Dawley rat pups underwent MS for 4-h/day or received typical care (CON) between postnatal days 2-20; for the ISO condition, separate cohorts were individually housed between days 20-40 or served as controls (CON2). Anhedonia was defined by dichotomizing subjects into two groups based on one standard deviation of the mean number of escapes for the CON group (<14). This approach categorized 22% of CON subjects and 44% of MS subjects as anhedonic (p < 0.05), similar to the prevalence in maltreated human populations. Only 12.5% of ISO rats met criterion versus 28.5% in CON2 rats. Levels of PV and TrkB were reduced in the amygdala and prelimbic prefrontal cortex (PFC) in MS rats with <14 escapes, but elevated in behaviorally resilient MS rats (>13 escapes). The number of escapes in MS subjects significantly correlated with PV and TrkB levels (PFC: r = 0.93 and 0.91 and amygdala: r = 0.63 and 0.81, respectively; n = 9), but not in CON/ISO/CON2 subjects. Calretinin, but not calbindin, was elevated in the amygdala of MS subjects. These data suggest that low levels of PV and TrkB double the risk for anhedonia in females with an MS history compared to normal adolescent females.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Anhedonia/fisiología , Conducta Animal/fisiología , Depresión/fisiopatología , Privación Materna , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Receptor trkB/metabolismo , Resiliencia Psicológica , Animales , Modelos Animales de Enfermedad , Femenino , Desamparo Adquirido , Ratas , Ratas Sprague-Dawley , Aislamiento Social
11.
Addict Biol ; 21(1): 111-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25262980

RESUMEN

Both the opioid antagonist naltrexone and corticotropin-releasing factor type-1 receptor (CRF-R1) antagonists have been investigated for the treatment of alcoholism. The current study examines the combination of naltrexone and CP154526 to reduce intermittent access ethanol drinking [intermittent access to alcohol (IAA)] in C57BL/6J male mice, and if these compounds reduce drinking via serotonergic mechanisms in the dorsal raphe nucleus (DRN). Systemic injections and chronic intracerebroventricular infusions of naltrexone, CP154526 or CP376395 transiently decreased IAA drinking. Immunohistochemistry revealed CRF-R1 or µ-opioid receptor immunoreactivity was co-localized in tryptophan hydroxylase (TPH)-immunoreactive neurons as well as non-TPH neurons in the DRN. Mice with a history of IAA or continuous access to alcohol were microinjected with artificial cerebral spinal fluid, naltrexone, CP154526 or the combination into the DRN or the median raphe nucleus (MRN). Either intra-DRN naltrexone or CP154526 reduced IAA in the initial 2 hours of fluid access, but the combination did not additively suppress IAA, suggesting a common mechanism via which these two compounds affect intermittent drinking. These alcohol-reducing effects were localized to the DRN of IAA drinkers, as intra-MRN injections only significantly suppressed water drinking, and continuous access drinkers were not affected by CRF-R1 antagonism. Extracellular serotonin was measured in the medial prefrontal cortex (mPFC) using in vivo microdialysis after intra-DRN microinjections in another group of mice. Intra-DRN CP154526 increased serotonin impulse flow to the mPFC while naltrexone did not. This suggests the mPFC may not be an essential location to intermittent drinking, as evidenced by different effects on serotonin signaling to the forebrain yet similar behavioral findings.


Asunto(s)
Consumo de Bebidas Alcohólicas , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/administración & dosificación , Núcleo Dorsal del Rafe , Etanol/administración & dosificación , Antagonistas de Narcóticos/farmacología , Corteza Prefrontal/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores Opioides mu/antagonistas & inhibidores , Aminopiridinas/farmacología , Animales , Inmunohistoquímica , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Microdiálisis , Naltrexona/farmacología , Corteza Prefrontal/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores Opioides mu/metabolismo , Autoadministración , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo
12.
Synapse ; 70(3): 125-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26696011

RESUMEN

Interactions between corticotropin-releasing factor (CRF) and monoaminergic systems originating from the dorsal raphe nucleus (DR) and ventral tegmental area (VTA) have been implicated in the etiology and pathophysiology of several stress-related neuropsychiatric disorders such as depression and substance abuse. Sub-regions within the DR and VTA give rise to specific projections that have unique roles in limbic- and reward-related behaviors. Given that these disorders typically emerge during adolescence, it is surprising that few studies have examined the age-, sex-, and region-dependent expression of CRF receptors throughout multiple stages of adolescence in these stress-relevant circuits. To determine the ontogeny of CRF receptors during adolescent development, three regions of the DR (dorsal, caudal, and ventrolateral parts) and the posterior VTA were microdissected from Sprague-Dawley male and female rats on postnatal day (P) 25, P35, P42, P56, and P90. Tissue was processed and analyzed with qRT-PCR to measure CRF1 and CRF2 receptors. The serotonin and catecholamine enzymes in the DR and VTA, tryptophan hydroxylase 2 (TPH2) and tyrosine hydroxylase, respectively, were also analyzed for maturational differences. This study identified that CRF1 receptors are lower in males than females within the dorsal, ventrolateral region of the DR (DRVL), which is involved in anxiety-, stress-, and panic-related responses. Females had higher CRF2 receptors compared to males in the DRVL only. Levels of TPH2 mRNA in the DRVL were overproduced transiently in females before declining into adulthood. These fundamental studies suggest that sex differences in CRF receptors should be considered when examining stress-related neuropsychiatric disorders and their treatment.


Asunto(s)
Núcleo Dorsal del Rafe/crecimiento & desarrollo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Caracteres Sexuales , Área Tegmental Ventral/crecimiento & desarrollo , Animales , Núcleo Dorsal del Rafe/fisiología , Femenino , Masculino , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/fisiología
13.
Psychopharmacology (Berl) ; 232(17): 3173-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26018530

RESUMEN

RATIONALE: Obsessive-compulsive disorder (OCD) gradually emerges and reaches clinical significance during early adulthood. Whether a predisposition for OCD manifests as binge eating disorder earlier during adolescence is proposed. OBJECTIVES: To further characterize how OCD-like behaviors increase across maturation and to determine whether an OCD-like predisposition increases the likelihood of binge eating during adolescence. METHODS: Male and female Sprague-Dawley rats were injected with the tricyclic antidepressant clomipramine (CMI, 15 mg/kg) or saline vehicle twice daily between postnatal days 9-15. Both groups were tested for perseverative (spontaneous alternation) and anxiety-like (elevated plus maze; marble burying) behaviors during juvenility (day 28), adolescence (day 60), and adulthood (day 90). Both motivations to eat sucrose pellets and binge eating on fat were investigated. RESULTS: Sex- and age-dependent increases in anxiety-like and perseverative behavior were observed in CMI subjects. Differences in consummatory behaviors emerged during late adolescence, while no significant differences in alternation or anxiety-like behaviors were detected between CMI and vehicle animals until adulthood. Adolescent CMI females consumed more sucrose pellets in 30 min relative to vehicle females, whereas adolescent CMI males consumed approximately half as much as vehicle males. Sucrose consumption did not differ between groups in adulthood. Adolescent CMI rats demonstrated more fat bingeing than vehicles, independent of sex. CONCLUSIONS: OCD-like behaviors are emerging during adolescence, but sucrose consumption and fat bingeing in CMI-treated animals significantly precedes the appearance of anxiety and perseveration. This OCD-like phenotype emerges fully during adulthood, suggesting that eating may likely serve as a coping strategy in these animals.


Asunto(s)
Trastorno por Atracón/psicología , Trastorno Obsesivo Compulsivo/psicología , Adaptación Psicológica , Envejecimiento/psicología , Animales , Antidepresivos Tricíclicos/farmacología , Ansiedad/psicología , Conducta Animal/efectos de los fármacos , Clomipramina/farmacología , Conducta Consumatoria/efectos de los fármacos , Grasas de la Dieta , Femenino , Masculino , Motivación , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Sacarosa
14.
Psychopharmacology (Berl) ; 232(6): 991-1001, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25242256

RESUMEN

RATIONALE: Stress experiences have been shown to be a risk factor for alcohol abuse in humans; however, a reliable mouse model using episodic social stress has yet to be developed. OBJECTIVES: The current studies investigated the effects of mild and moderate social defeat protocols on plasma corticosterone, voluntary alcohol drinking, and motivation to drink alcohol. METHODS: Outbred Carworth Farms Webster (CFW) mice were socially defeated for 10 days during which the intruder mouse underwent mild (15 bites: mean = 1.5 min) or moderate (30 bites: mean = 3.8 min) stress. Plasma corticosterone was measured on days 1 and 10 of the defeat. Ethanol drinking during continuous access to alcohol was measured 10 days following the defeat or 10 days prior to, during, and 20 days after the defeat. Motivation to drink was determined using a progressive ratio (PR) operant conditioning schedule during intermittent access to alcohol. RESULTS: Plasma corticosterone was elevated in both stress groups on days 1 and 10. Ethanol consumption and preference following moderate stress were higher (13.3 g/kg/day intake) than both the mild stress group (8.0 g/kg/day) and controls (7.4 g/kg/day). Mice with previously acquired ethanol drinking showed decreased alcohol consumption during the moderate stress followed by an increase 20 days post-defeat. Moderately stressed mice also showed escalated ethanol intake and self-administration during a schedule of intermittent access to alcohol. CONCLUSION: Social defeat experiences of moderate intensity and duration led to increased ethanol drinking and preference in CFW mice. Ongoing work investigates the interaction between glucocorticoids and dopaminergic systems as neural mechanisms for stress-escalated alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/sangre , Corticosterona/sangre , Dominación-Subordinación , Etanol/administración & dosificación , Motivación/efectos de los fármacos , Estrés Psicológico/sangre , Animales , Condicionamiento Operante/efectos de los fármacos , Masculino , Ratones , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...