Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 376(6597): 1052-1053, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653466

RESUMEN

Parthenogenetic grasshoppers confound predictions by showing no signs of decline.


Asunto(s)
Saltamontes , Partenogénesis , Animales , Extinción Biológica , Saltamontes/genética , Saltamontes/fisiología
3.
Zookeys ; 1047: 1-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248364

RESUMEN

Four new species of armored scale insect, Clavaspis selvatica sp. nov., Clavaspis virolae sp. nov., Davidsonaspis tovomitae sp. nov., and Rungaspis neotropicalis sp. nov., are described and illustrated from Panama. We also transfer two previously described species of Panamanian Aspidiotini to new genera, Hemiberlesia crescentiae (Ferris) comb. nov. and Rungaspis rigida (Ferris) comb. nov., and report the first record of Selenaspidopsis browni Nakahara in Panama. A key to the species of Aspidiotini occurring in Panama is provided.

4.
Evolution ; 75(11): 2972-2983, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33844310

RESUMEN

Androdioecy (the coexistence of males and hermaphrodites) is a rare mating system for which the evolutionary dynamics are poorly understood. Here, we investigate the cottony cushion scale, Icerya purchasi, one of only three reported cases of androdioecy in insects. In this species, female-like hermaphrodites have been shown to produce sperm and self-fertilize. However, males are ocassionally observed as well. In a large genetic analysis, we show for the first time that, although self-fertilization appears to be the primary mode of reproduction, rare outbreeding events do occur in natural populations, supporting the hypothesis that hermaphrodites mate with males and hence androdioecy is the mating system of I. purchasi. Thus, this globally invasive pest insect appears to enjoy the colonization advantages of a selfing organism while also benefitting from periodic reintroduction of genetic variation through outbreeding with males.


Asunto(s)
Hemípteros , Animales , Femenino , Insectos/genética , Masculino
5.
Zookeys ; 1065: 141-203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36452345

RESUMEN

This work provides general descriptions, illustrations, molecular diagnostic data, taxonomic keys, slide mounting recommendations, and Florida distribution records for Fiorinia Targioni Tozzetti species occurring in the USA. Species treated are F.externa Ferris, F.fioriniae (Targioni Tozzetti), F.japonica Kuwana, F.pinicola Maskell, F.phantasma Cockerell & Robinson, F.proboscidaria Green, and F.theae Green. New descriptions of second-instar males and females of all seven species in addition to first-instar nymphs and adult females of F.phantasma and F.proboscidaria are presented. Taxonomic keys to second-instar males and females are developed for the first time and previously available taxonomic keys to first-instar nymphs and adult females are improved. DNA sequences were used to further evaluate the monophyly of Fiorinia and provide additional diagnostic tools for Fiorinia species. Multigene phylogenetic analyses, COI barcoding methods, and examination of type material indicate that F.yongxingensis Liu, Cai & Feng, 2020, syn. nov. is a junior synonym of F.phantasma. A morphological survey of the genus demonstrates, for the first time, the utility of second-instar males for diagnostics. This study will help inform regulatory and pest management decisions by facilitating morphological and molecular identification of adventive Fiorinia species occurring in the USA.

6.
Ecol Evol ; 10(23): 12910-12919, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304503

RESUMEN

Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade-offs on alternative host plants, yet the evidence of such trade-offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population-genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more-specialized species occur on fewer of their potential hosts than do less-specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more-specialized species do not appear to outperform more generalist species.

7.
Zookeys ; 948: 47-73, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765171

RESUMEN

Five new species of armored scale insect from Argentina are described and illustrated based upon morphological and molecular evidence from adult females: Chortinaspis jujuyensis sp. nov., Clavaspis patagonensis sp. nov., Hemiberlesia ozolita sp. nov., Melanaspis lilloi sp. nov., and Melanaspis targionoides sp. nov. The genera Chortinaspis and Melanaspis are recorded for the first time from this country. An identification key to all recorded species from tribe Aspidiotini occurring in Argentina is provided.

8.
Bull Entomol Res ; 110(2): 293-301, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31571552

RESUMEN

Stictococcus vayssierei is a major pest of root and tuber crops in central Africa. However, data on its ecology are lacking. Here we provide an updated estimate of its distribution with the aim of facilitating the sustainable control of its populations. Surveys conducted in nine countries encompassing 13 ecological regions around the Congo basin showed that African root and tuber scale was present in Cameroon, Central African Republic, Congo, Democratic Republic of Congo, Equatorial Guinea, Gabon and Uganda. It was not found on the sites surveyed in Chad and Nigeria. The pest occurred in the forest and the forest-savannah mosaic as well as in the savannah where it was never recorded before. However, prevalence was higher in the forest (43.1%) where cassava was the most infested crop, compared to the savannah (9.2%) where aroids (cocoyam and taro) were the most infested crops. In the forest habitat, the pest was prevalent in all but two ecological regions: the Congolian swamp forests and the Southern Congolian forest-savanna mosaic. In the savannah habitat, it was restricted to the moist savannah highlands and absent from dry savannahs. The scale was not observed below 277 m asl. Where present, the scale was frequently (87.1% of the sites) attended by the ant Anoplolepis tenella. High densities (>1000 scales per plant) were recorded along the Cameroon-Gabon border. Good regulatory measures within and between countries are required to control the exchange of plant materials and limit its spread. The study provides information for niche modeling and risk mapping.


Asunto(s)
Distribución Animal , Hemípteros , África Central , Animales , Araceae , Productos Agrícolas , Femenino , Manihot , Densidad de Población
9.
Zootaxa ; 4616(1): zootaxa.4616.1.1, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31716328

RESUMEN

Armored scale insects (Hemiptera: Coccomorpha: Diaspididae) are major economic pests and are among the world's most invasive species. Here we describe a system of specimen and identification management that establishes a basis for well-vouchered molecular identification. We also present an expanded Bayesian phylogenetic analysis based on concatenated fragments of 4 genetic loci: the large ribosomal subunit (28S), elongation factor-1 alpha (EF-1α), cytochrome oxidase I and II (COI‒II), and the small ribosomal subunit (16S) of the primary endosymbiont, Uzinura diaspidicola (Bacteroidetes: Flavobacteriales). Our sample includes 1,389 individuals, representing 11 outgroup species and at least 311 described and 61 undescribed diaspidid species. The results broadly support Takagi's 2002 classification but indicate that some revisions are needed. We propose a revised classification recognizing 4 subfamilies: Ancepaspidinae Borchsenius, new rank, Furcaspidinae Balachowsky, new rank, Diaspidinae Targioni Tozzetti, and Aspidiotinae Westwood. Within Aspidiotinae, in addition to the existing tribes Aspidiotini Westwood, Parlatoriini Leonardi, Odonaspidini Ferris, Leucaspidini Atkinson, and Smilacicolini Takagi, we recognize as tribes Gymnaspidini Balachowsky, new rank, and Aonidiini Balachowsky, new rank. Within Diaspidinae we recognize the 2 tribes Lepidosaphidini Shimer and Diaspidini Targioni Tozzetti, and within Diaspidini we recognize three subtribes: Diaspidina Targioni Tozzetti, Fioriniina Leonardi, and Chionaspidina Brues Melander. We regard Kuwanaspidina Borchsenius as a junior synonym of Fioriniina, Thysanaspidini Takagi as a junior synonym of Leucaspidini, and Protodiaspidina Takagi and Ulucoccinae Takagi as junior synonyms of Chionaspidina. To clarify the composition of the higher taxa we describe 2 new genera for Australian species heretofore misplaced in the genus Ancepaspis Ferris: Brimblecombia Normark (Aonidiini) and Hendersonaspis Normark (Leucaspidini). We also propose many additional minor modifications to the taxonomy of Diaspididae, including the following new combinations, revived combinations, and replacement names: Aonidia edgerleyi (Mamet), new combination (from Bigymnaspis Balachowsky); Aonidomytilus espinosai Porter, revived combination (from Porterinaspis González); Aspidiotus badius (Brain), new combination (this and the next 5 Aspidiotus species all from Aonidia Targioni Tozzetti); Aspidiotus biafrae (Lindinger), new combination; Aspidiotus chaetachmeae (Brain), new combination; Aspidiotus laticornis (Balachowsky), new combination; Aspidiotus rhusae (Brain), new combination; Aspidiotus sclerosus (Munting), new combination; Brimblecombia asperata (Brimblecombe), new combination (this and the next 5 Brimblecombia species all from Ancepaspis); Brimblecombia longicauda (Brimblecombe), new combination; Brimblecombia magnicauda (Brimblecombe), new combination; Brimblecombia reticulata (Brimblecombe), new combination; Brimblecombia rotundicauda (Brimblecombe), new combination; Brimblecombia striata (Brimblecombe), new combination; Cooleyaspis pseudomorpha (Leonardi), new combination (from Dinaspis Leonardi); Cupidaspis wilkeyi (Howell Tippins), new combination (from Paracupidaspis Howell Tippins); Cupressaspis isfarensis Borchsenius, revived combination (this species, the next 2 species in Cupressaspis Borchsenius, revived genus, and the next 9 species in Diaspidiotus Cockerell all from Aonidia); Cupressaspis mediterranea (Lindinger), revived combination; Cupressaspis relicta (Balachowsky), new combination; Diaspidiotus atlanticus (Ferris), new combination; Diaspidiotus marginalis (Brain), new combination; Diaspidiotus maroccanus (Balachowsky), new combination; Diaspidiotus mesembryanthemae (Brain), new combination; Diaspidiotus opertus (De Lotto), new combination; Diaspidiotus shastae (Coleman), new combination; Diaspidiotus simplex (Leonardi), new combination; Diaspidiotus visci (Hall), new combination; Diaspidiotus yomae (Munting), new combination; Diaspis arundinariae (Tippins Howell), new combination (from Geodiaspis Tippins Howell); Duplachionaspis arecibo (Howell), new combination (this and the next 10 Duplachionaspis MacGillivray species all from Haliaspis Takagi); Duplachionaspis asymmetrica Ferris, revived combination; Duplachionaspis distichlii (Ferris), revived combination; Duplachionaspis litoralis Ferris, revived combination; Duplachionaspis mackenziei McDaniel, revived combination; Duplachionaspis milleri (Howell), new combination; Duplachionaspis nakaharai (Howell), new combination; Duplachionaspis peninsularis (Howell), new combination; Duplachionaspis spartinae (Comstock), revived combination; Duplachionaspis texana (Liu Howell) new combination; Duplachionaspis uniolae (Takagi), new combination; Duplachionaspis mutica (Williams) (from Aloaspis Williams), new combination; Epidiaspis doumtsopi (Schneider), new combination (from Diaspis Costa); Fiorinia ficicola (Takahashi), new combination (from Ichthyaspis Takagi); Fiorinia macroprocta (Leonardi), revived combination (this and the next 2 species of Fiorinia Targioni Tozzetti all from Trullifiorinia Leonardi); Fiorinia rubrolineata Leonardi, revived combination; Fiorinia scrobicularum Green, revived combination; Genaparlatoria pseudaspidiotus (Lindinger), revived combination (from Parlatoria); Greeniella acaciae (Froggatt), new combination (this and the next 4 Greeniella Cockerell species all from Gymnaspis Newstead); Greeniella cassida (Hall Williams), new combination; Greeniella grandis (Green), new combination; Greeniella perpusilla (Maskell), new combination; Greeniella serrata (Froggatt), new combination; Hendersonaspis anomala (Green), new combination (from Ancepaspis); Hulaspis bulba (Munting), new combination (this and the next Hulaspis Hall species both from Andaspis MacGillivray); Hulaspis formicarum (Ben-Dov), new combination; Lepidosaphes antidesmae (Rao in Rao Ferris), new combination (this and the next 19 species all from Andaspis); Lepidosaphes arcana (Matile-Ferrero), new combination; Lepidosaphes betulae (Borchsenius), new combination; Lepidosaphes citricola (Young Hu), new combination; Lepidosaphes conocarpi (Takagi), new combination; Lepidosaphes crawi (Cockerell), revived combination; Lepidosaphes erythrinae Rutherford, revived combination; Lepidosaphes incisor Green, revived combination; Lepidosaphes indica (Borchsenius), new combination; Lepidosaphes kashicola Takahashi, revived combination; Lepidosaphes kazimiae (Williams), new combination; Lepidosaphes laurentina (Almeida), new combination; Lepidosaphes maai (Williams Watson), new combination; Lepidosaphes mackieana McKenzie, revived combination; Lepidosaphes micropori (Borchsenius), new combination; Lepidosaphes punicae Laing, revived combination; Lepidosaphes quercicola (Borchsenius), new combination; Lepidosaphes recurrens (Takagi Kawai), new combination; Lepidosaphes viticis (Takagi), new combination; Lepidosaphes xishuanbannae (Young Hu), new combination; Lepidosaphes giffardi (Adachi Fullaway), new combination (from Carulaspis MacGillivray); Lepidosaphes garciniae (Young Hu), new combination (this and the next 2 species all from Ductofrontaspis Young Hu); Lepidosaphes huangyangensis (Young Hu), new combination; Lepidosaphes jingdongensis (Young Hu), new combination; Lepidosaphes recurvata (Froggatt), revived combination (from Metandaspis Williams); Lepidosaphes ficicola Takahashi, revived combination (this and the next 2 species all from Ungulaspis MacGillivray); Lepidosaphes pinicolous Chen, revived combination; Lepidosaphes ungulata Green, revived combination; Lepidosaphes serrulata (Ganguli), new combination (from Velataspis Ferris); Lepidosaphes huyoung Normark, replacement name for Andaspis ficicola Young Hu; Lepidosaphes tangi Normark, replacement name for Andaspis schimae Tang; Lepidosaphes yuanfeng Normark, replacement name for Andaspis keteleeriae Yuan Feng; Leucaspis ilicitana (Gómez-Menor), new combination (from Aonidia); Lopholeucaspis spinomarginata (Green), new combination (from Gymnaspis); Melanaspis campylanthi (Lindinger), new combination (from Aonidia); Mohelnaspis bidens (Green), new combination (from Fiorinia); Parlatoria affinis (Ramakrishna Ayyar), new combination (this and the next 4 Parlatoria species all from Gymnaspis); Parlatoria ficus (Ramakrishna Ayyar), new combination; Parlatoria mangiferae (Ramakrishna Ayyar), new combination; Parlatoria ramakrishnai (Green), new combination; Parlatoria sclerosa (Munting), new combination; Parlatoria bullata (Green), new combination (from Bigymnaspis); Parlatoria leucaspis (Lindinger), new combination (this and the next species both from Cryptoparlatorea Lindinger); Parlatoria pini (Takahashi), new combination; Parlatoria tangi Normark, replacement name for Parlatoria pini Tang; Pseudoparlatoria bennetti (Williams), new combination (from Parlagena McKenzie); Pseudoparlatoria chinchonae (McKenzie), new combination (from Protodiaspis Cockerell); Pseudoparlatoria larreae (Leonardi), revived combination (from Protargionia Leonardi); Quernaspis lepineyi (Balachowsky), new combination (from Chionaspis); Rhizaspidiotus nullispinus (Munting), new combination (from Aonidia); Rolaspis marginalis (Leonardi), new combination (from Lepidosaphes); Salicicola lepelleyi (De Lotto), new combination (from Anotaspis Ferris); Tecaspis giffardi (Leonardi), new combination (from Dinaspis); Trullifiorinia geijeriae (Froggatt), new combination (from Fiorinia); Trullifiorinia nigra (Lindinger), new combination (from Crypthemichionaspis Lindinger); and Voraspis olivina (Leonardi), new combination (from Lepidosaphes).


Asunto(s)
Hemípteros , Animales , Teorema de Bayes , Filogenia
10.
Zookeys ; 867: 87-96, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404413

RESUMEN

Aspidiotini is a species-rich tribe of armored scale insects that includes several polyphagous and specialist pests that are commonly encountered at ports-of-entry to the United States and many other countries. This article describes a newly available online interactive tool that can be used to identify 155 species of Aspidiotini that are recognized as minor to major pests or that are potentially emergent pests. This article lists the species and features included with a description of the development and structure of the key. The interactive key is free to access at https://idtools.org/id/scales/aspidiotini/about_index.php.

11.
Mol Phylogenet Evol ; 129: 291-303, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30195475

RESUMEN

The armored scale insect tribe Aspidiotini comprises many pest species that are globally invasive and economically damaging. The taxonomy of scale insects is based almost solely upon morphological characters of adult females, and little prior work has been done to test the classification of aspidiotines against molecular evidence. To address these concerns, we reconstruct a molecular phylogeny for aspidiotine armored scales that expands greatly upon taxonomic and character representations from previous studies. Our dataset includes 127 species (356 terminal taxa) and four gene regions: 28S, EF-1α, COI-COII, and CAD. Nearly 50% of the species treated are identified as pests and several more may represent emerging pests. Phylogenetic data were analyzed in a Bayesian framework using MC3 iterations. The majority of sampled aspidiotine genera are not monophyletic as currently defined. Monophyly constraints for 'worst offenders' were imposed on the phylogeny and stepping-stone MCMC was performed to calculate marginal likelihood scores. Comparisons of marginal likelihoods from runs with constrained vs. informative priors support the interpretation that pest-rich genera are not monophyletic. We use character mapping to illustrate signal and convergence for selected traits that have been used to define or recognize genera and evaluate consistency and retention indices for these traits. The phylogeny illustrates a pervasive pattern in which extremely polyphagous pests - typically having large populations and wide geographical distributions - are frequently intertwined with range-limited specialists on the phylogeny. Finally, the phylogeny recovers three origins of ant association among the Aspidiotini. The history of ant/diaspidid symbioses involves periods of sustained partner fidelity, spanning multiple speciation events, which have been punctuated by opportunistic switches to novel partners.


Asunto(s)
Hormigas/genética , Hemípteros/clasificación , Hemípteros/genética , Filogenia , Animales , Teorema de Bayes , Femenino , Genes de Insecto , Funciones de Verosimilitud , Cadenas de Markov , Método de Montecarlo , Especificidad de la Especie
12.
PLoS One ; 12(5): e0176956, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28472112

RESUMEN

For plant-eating insects, we still have only a nascent understanding of the genetic basis of host-use promiscuity. Here, to improve that situation, we investigated host-induced gene expression plasticity in the invasive lobate lac scale insect, Paratachardina pseudolobata (Hemiptera: Keriidae). We were particularly interested in the differential expression of detoxification and effector genes, which are thought to be critical for overcoming a plant's chemical defenses. We collected RNA samples from P. pseudolobata on three different host plant species, assembled transcriptomes de novo, and identified transcripts with significant host-induced gene expression changes. Gene expression plasticity was pervasive, but the expression of most detoxification and effector genes was insensitive to the host environment. Nevertheless, some types of detoxification genes were more differentially expressed than expected by chance. Moreover, we found evidence of a trade-off between expression of genes involved in primary and secondary metabolism; hosts that induced lower expression of genes for detoxification induced higher expression of genes for growth. Our findings are largely consonant with those of several recently published studies of other plant-eating insect species. Thus, across plant-eating insect species, there may be a common set of gene expression changes that enable host-use promiscuity.


Asunto(s)
Perfilación de la Expresión Génica , Hemípteros/genética , Especies Introducidas , Animales , ARN Mensajero/genética , Transcriptoma
13.
Am Nat ; 188(6): 640-650, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27860513

RESUMEN

A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.


Asunto(s)
Evolución Biológica , Herbivoria , Heterópteros/fisiología , Mariposas Nocturnas/fisiología , Animales , Cadena Alimentaria , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia , Fenómenos Fisiológicos de las Plantas
14.
Evolution ; 70(10): 2421-2428, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27507211

RESUMEN

At least half of metazoan species are herbivorous insects. Why are they so diverse? Most herbivorous insects feed on few plant species, and adaptive host specialization is often invoked to explain their diversification. Nevertheless, it is possible that the narrow host ranges of many herbivorous insects are nonadaptive. Here, we test predictions of this hypothesis with comparative phylogenetic analyses of scale insects, a group for which there appear to be few host-use trade-offs that would select against polyphagy, and for which passive wind-dispersal should make host specificity costly. We infer a strong positive relationship between host range and diversification rate, and a marked asymmetry in cladogenetic changes in diet breadth. These results are consonant with a system of pervasive nonadaptive host specialization in which small, drift- and extinction-prone populations are frequently isolated from persistent and polyphagous source populations. They also contrast with the negative relationship between diet breadth and taxonomic diversification that has been estimated in butterflies, a disparity that likely stems from differences in the average costs and benefits of host specificity and generalism in scale insects versus butterflies. Our results indicate the potential for nonadaptive processes to be important to diet-breadth evolution and taxonomic diversification across herbivorous insects.


Asunto(s)
Evolución Molecular , Flujo Genético , Herbivoria , Insectos/genética , Adaptación Fisiológica , Animales , Biomasa , Variación Genética , Insectos/clasificación , Insectos/fisiología , Magnoliopsida/clasificación , Magnoliopsida/genética , Magnoliopsida/crecimiento & desarrollo , Modelos Genéticos , Filogenia
15.
Mol Ecol ; 25(11): 2333-6, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27145221

RESUMEN

Richard G. Harrison passed away unexpectedly on April 12th, 2016. In this memoriam we pay tribute to the life and legacy of an extraordinary scientist, mentor, friend, husband, and father.


Asunto(s)
Genética/historia , Hibridación Genética , Animales , Gryllidae/genética , Historia del Siglo XX , Historia del Siglo XXI
16.
Biol Lett ; 11(12): 20150924, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26701757

RESUMEN

The specificity of the interactions between plants and their consumers varies considerably. The evolutionary and ecological factors underlying this variation are unclear. Several potential explanatory factors vary with latitude, for example plant species richness and the intensity of herbivory. Here, we use comparative phylogenetic methods to test the effect of latitude on host range in scale insects. We find that, on average, scale insects that occur in lower latitudes are more polyphagous. This result is at odds with the general pattern of greater host-plant specificity of insects in the tropics. We propose that this disparity reflects a high cost for host specificity in scale insects, stemming from unusual aspects of scale insect life history, for example, passive wind-driven dispersal. More broadly, the strong evidence for pervasive effects of geography on host range across insect groups stands in stark contrast to the weak evidence for constraints on host range due to genetic trade-offs.


Asunto(s)
Hemípteros/fisiología , Plantas/parasitología , Animales , Geografía , Especificidad del Huésped , Modelos Teóricos , Filogenia , Clima Tropical
17.
Evolution ; 69(10)2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26374400

RESUMEN

A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Hemípteros/genética , Herbivoria/genética , Filogenia , Animales , Hemípteros/clasificación , Plantas
18.
Philos Trans R Soc Lond B Biol Sci ; 369(1642): 20130364, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24686935

RESUMEN

Genetic conflict may have played an important role in the evolution of novel genetic systems. The ancestral system of eumendelian genetics is highly symmetrical. Those derived from it (e.g. thelytokous parthenogenesis, haplodiploidy and parent-specific allele expression) are more asymmetrical in the genetic role played by maternal versus paternal alleles. These asymmetries may have arisen from maternal-paternal genetic conflict, or cytonuclear conflict, or from an interaction between them. Asymmetric genetic systems are much more common in terrestrial and freshwater taxa than in marine taxa. We suggest three reasons for this, based on the relative inhospitability of terrestrial environments to three types of organism: (i) pathogens-departure from the marine realm meant escape from many pathogens and parasites, reducing the need for sexual reproduction; (ii) symbionts-symbionts are no more important in the terrestrial realm than the marine realm but are more likely to be obligately intracellular and vertically transmitted, making them more likely to disrupt their host's genetic systems; (iii) Gametes and embryos-because neither gametes nor embryos can be shed into air as easily as into seawater, the mother's body is a more important environment for both types of organisms in the terrestrial realm than in the marine realm. This environment of asymmetric kinship (with neighbours more closely related by maternal alleles than by paternal alleles) may have helped to drive asymmetries in expression and transmission.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Ambiente , Aptitud Genética , Genética de Población , Patrón de Herencia/genética , Modelos Genéticos , Animales , Femenino , Células Germinativas/fisiología , Masculino , Ploidias , Factores Sexuales , Simbiosis
20.
Zookeys ; (270): 37-58, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717184

RESUMEN

The genus Chionaspis (Hemiptera, Diaspididae) includes two North American species of armored scale insects feeding on Pinaceae: Chionaspis heterophyllae Cooley, and Chionaspis pinifoliae (Fitch). Despite the economic impact of conifer-feeding Chionaspis on horticulture, the species diversity in this group has only recently been systematically investigated using samples from across the group's geographic and host range. This paper provides morphological recognition characters for four new species that were recently hypothesized to exist on the basis of molecular evidence. The new species, here described, are Chionaspis brachycephalon Vea sp. n., Chionaspis caudata Vea sp. n., Chionaspis sonorae Vea sp. n. and Chionaspis torreyanae Vea sp. n.  One of the new species, Chionaspis caudata Vea, has a gland spine at the apex of the pygidium, between the median lobes, unlike any other species of Chionaspis. An identification key to the species of Chionaspis feeding on pine in North America is provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...