Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(11): e0275837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36355848

RESUMEN

We review a collection of published renal epithelial transport models, from which we build a consistent and reusable mathematical model able to reproduce many observations and predictions from the literature. The flexible modular model we present here can be adapted to specific configurations of epithelial transport, and in this work we focus on transport in the proximal convoluted tubule of the renal nephron. Our mathematical model of the epithelial proximal convoluted tubule describes the cellular and subcellular mechanisms of the transporters, intracellular buffering, solute fluxes, and other processes. We provide free and open access to the Python implementation to ensure our multiscale proximal tubule model is accessible; enabling the reader to explore the model through setting their own simulations, reproducibility tests, and sensitivity analyses.


Asunto(s)
Túbulos Renales Proximales , Nefronas , Reproducibilidad de los Resultados , Túbulos Renales Proximales/metabolismo , Riñón , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico
2.
Neuroimage ; 227: 117633, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33316393

RESUMEN

We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABAA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state ("awake") and a low-firing ("anesthetized") state such that the brain can transition from "awake" to "anesthetized" states at a critical level of drug concentration. The modified HvP model predicts a drug-effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.


Asunto(s)
Anestésicos Intravenosos/farmacología , Corteza Cerebral/efectos de los fármacos , Modelos Neurológicos , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Propofol/farmacología , Corteza Cerebral/fisiología , Humanos , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...