Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-20483234

RESUMEN

We recently identified approximately 1400 conserved non-coding elements (CNEs) shared by the genomes of fugu (Takifugu rubripes) and human that appear to be associated with developmental regulation in vertebrates [Woolfe, A., Goodson, M., Goode, D.K., Snell, P., McEwen, G.K., Vavouri, T., Smith, S.F., North, P., Callaway, H., Kelly, K., Walter, K., Abnizova, I., Gilks, W., Edwards, Y.J.K., Cooke, J.E., Elgar, G., 2005. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3 (1), e7]. This study encompassed a multi-disciplinary approach using bioinformatics, statistical methods and functional assays to identify and characterise the CNEs. Using an in vivo enhancer assay, over 90% of tested CNEs up-regulate tissue-specific GFP expression. Here we review our group's research in the field of characterising non-coding sequences conserved in vertebrates. We take this opportunity to discuss our research in progress and present some results of new and additional analyses. These include a phylogenomics analysis of CNEs, sequence conservation patterns in vertebrate CNEs and the distribution of human SNPs in the CNEs. We highlight the usefulness of the CNE dataset to help correlate genetic variation in health and disease. We also discuss the functional analysis using the enhancer assay and the enrichment of predicted transcription factor binding sites for two CNEs. Public access to the CNEs plus annotation is now possible and is described. The content of this review was presented by Dr. Y.J.K. Edwards at the TODAI International Symposium on Functional Genomics of the Pufferfish, Tokyo, Japan, 3-6 November 2004.

2.
PLoS Biol ; 3(1): e7, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15630479

RESUMEN

In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH), in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development, including many transcription factors. These highly conserved non-coding sequences are likely to form part of the genomic circuitry that uniquely defines vertebrate development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma Humano , Secuencias Reguladoras de Ácidos Nucleicos , Takifugu/genética , Animales , Secuencia Conservada , Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Proteínas del Ojo/metabolismo , Genoma , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas de Neoplasias/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB2 , Análisis de Secuencia de ADN , Especificidad de la Especie , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA