Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Kidney Med ; 6(4): 100801, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562969

RESUMEN

The low 1-year patency rate of mature arteriovenous fistulas (AVFs) remains a significant clinical problem. Although vessel properties and biomechanics have been suggested to affect AVF function, understanding their roles in AVF patency failure is challenging owing to the heterogeneity within the patient population, including demographics and comorbid conditions. In this study, we present a case of a patient with 2 upper-arm AVFs with different 1-year patency outcomes and investigate whether they had different histologic features before the AVF creation surgery and biomechanics at 1 day and 6 weeks after the AVF creation surgery using magnetic resonance imaging-based fluid structure interaction simulations. Despite both AVFs being in the upper arm, created <1 year apart by the same surgeon, and having similar preoperative vessel diameters, the 1-year patent AVF had less preoperative intimal collagen and higher wall shear stress 1 day after AVF creation, when compared with the AVF that failed by 1 year. Thus, a low intimal collagen content before the AVF surgery and higher wall shear stress immediately after the AVF creation surgery may be important for long-term AVF patency and should be investigated with larger cohorts.

2.
Sci Rep ; 13(1): 22786, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123618

RESUMEN

Newly created arteriovenous fistulas (AVFs) often fail to mature for dialysis use due to disturbed blood flow at and near the AVF anastomosis. The disturbed flow inhibits the endothelial nitric oxide synthase (NOS3) pathway, thus decreasing the production of nitric oxide, a vasodilator. Previously, our group reported that NOS3 expression levels affect AVF lumen size in a mouse model. In this study, we performed MRI-based computational fluid dynamics simulations to investigate the hemodynamical parameters (velocity, wall shear stress (WSS), and vorticity) in a mouse AVF model at day 7 and day 21 post-AVF creation using three NOS3 strains: overexpression (OE), knockout (KO), and wild-type (WT) control. This study is the first to reveal hemodynamics over time in mouse AVFs, consider spatial heterogeneity along the vein, and reveal the effect of NOS3 on the natural history of mouse AVF hemodynamics. From day 7 to day 21, OE has smoother streamlines and had significantly lower vorticity and WSS than WT and KO, suggesting that WSS was attempting to return to pre-surgery baseline, respectively. Our results conclude that the overexpression of NOS3 leads to desired optimal hemodynamics during AVF remodeling. Future studies can investigate enhancing the NOS3 pathway to improve AVF development.


Asunto(s)
Fístula Arteriovenosa , Óxido Nítrico Sintasa de Tipo III , Animales , Ratones , Modelos Animales de Enfermedad , Hemodinámica/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Diálisis Renal , Venas/metabolismo
3.
Clin J Am Soc Nephrol ; 18(1): 72-83, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446600

RESUMEN

BACKGROUND: Blood flow-induced wall shear stress is a strong local regulator of vascular remodeling, but its effects on arteriovenous fistula (AVF) remodeling are unclear. METHODS: In this prospective cohort study, we used computational fluid dynamics simulations and statistical mixed-effects modeling to investigate the associations between wall shear stress and AVF remodeling in 120 participants undergoing AVF creation surgery. Postoperative magnetic resonance imaging data at 1 day, 6 weeks, and 6 months were used to derive current wall shear stress by computational fluid dynamic simulations and to quantify subsequent changes in AVF lumen cross-sectional area at 1-mm intervals along the proximal artery and AVF vein. RESULTS: Combining artery and vein data, prior mean wall shear stress was significantly associated with lumen area expansion. Mean wall shear stress at day 1 was significantly associated with change in lumen area from day 1 to week 6 (11% larger area per interquartile range [IQR] higher mean wall shear stress, 95% confidence interval [95% CI], 5% to 18%; n =101), and mean wall shear stress at 6 weeks was significantly associated with change in lumen area from 6 weeks to month 6 (14% larger area per IQR higher, 95% CI, 3% to 28%; n =52). The association of mean wall shear stress at day 1 with lumen area expansion from day 1 to week 6 differed significantly by diabetes ( P =0.009): 27% (95% CI, 17% to 37%) larger area per IQR higher mean wall shear stress without diabetes and 9% (95% CI, -1% to 19%) with diabetes. Oscillatory shear index at day 1 was significantly associated with change in lumen area from day 1 to week 6 (5% smaller area per IQR higher oscillatory shear index, 95% CI, 3% to 7%), and oscillatory shear index at 6 weeks was significantly associated with change in lumen from 6 weeks to month 6 (7% smaller area per IQR higher oscillatory shear index, 95% CI, 2% to 11%). Wall shear stress spatial gradient was not significantly associated with subsequent remodeling. In a joint model, wall shear stress and oscillatory shear index statistically significantly interacted in their associations with lumen area expansion in a complex nonlinear fashion. CONCLUSIONS: Higher wall shear stress and lower oscillatory shear index were associated with greater lumen expansion after AVF creation surgery.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Estudios Prospectivos , Hemodinámica , Venas , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Diálisis Renal/efectos adversos
4.
Front Cardiovasc Med ; 9: 1001267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407418

RESUMEN

A significant number of arteriovenous fistulas (AVFs) fail to maturate for dialysis. Although interventions promote maturation, functional primary patency loss is higher for AVFs with interventions (assisted maturation) than AVFs without interventions (un-assisted maturation). Although blood flow-associated hemodynamics have long been proposed to affect AVF remodeling, the optimal hemodynamic parameters for un-assisted maturation are unclear. Additionally, AVF maturation progress is generally not investigated until 6 weeks after AVF creation, and the examination is focused on the AVF's venous limb. In this exploratory study, patients (n = 6) underwent magnetic resonance imaging (MRI) at 1 day, 6 weeks, and 6 months after AVF creation surgery. Before successful use for hemodialysis, three AVFs required intervention and three did not. MRI of the AVFs were used to calculate lumen cross-sectional area (CSA) and perform computational fluid dynamics (CFD) to analyze hemodynamics, including velocity, wall shear stress (WSS), and vorticity. For the venous limb, the no-intervention group and intervention group had similar pre-surgery vein diameter and 1-day post-surgery venous CSA. However, the no-intervention group had statistically larger 1-day venous velocity (0.97 ± 0.67 m/s; mean ± SD), WSS (333 ± 336 dyne/cm2) and vorticity (1709 ± 1290 1/s) than the intervention group (velocity = 0.23 ± 0.10 m/s; WSS = 49 ± 40 dyne/cm2; vorticity = 493.1 ± 227 1/s) (P < 0.05). At 6 months, the no-intervention group had statistically larger venous CSA (43.5 ± 27.4 mm2) than the intervention group (15.1 ± 6.2 mm2) (P < 0.05). Regarding the arterial limb, no-intervention AVF arteries also had statistically larger 1-day velocity (1.17 ± 1.0 m/s), WSS (340 ± 423 dyne/cm2), vorticity (1787 ± 1694 1/s), and 6-month CSA (22.6 ± 22.7 mm2) than the intervention group (velocity = 0.64 ± 0.36 m/s; WSS = 104 ± 116 dyne/cm2, P < 0.05; vorticity = 867 ± 4551/s; CSA = 10.7 ± 6.0 mm2, P < 0.05). Larger venous velocity, WSS, and vorticity immediately after AVF creation surgery may be important for later lumen enlargement and AVF maturation, with the potential to be used as a tool to help diagnose poor AVF maturation earlier. However, future studies using a larger cohort are needed to validate this finding and determine cut off values, if any.

5.
Front Bioeng Biotechnol ; 10: 855791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573253

RESUMEN

Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.

6.
Biomaterials ; 280: 121254, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34836683

RESUMEN

Vascular access is the lifeline for hemodialysis patients and the single most important component of the hemodialysis procedure. Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients, but nearly 60% of AVFs created fail to successfully mature due to early intimal hyperplasia development and poor outward remodeling. There are currently no therapies available to prevent AVF maturation failure. First, we showed the important regulatory role of nitric oxide (NO) on AVF development by demonstrating that intimal hyperplasia development was reduced in an overexpressed endothelial nitric oxide synthase (NOS3) mouse AVF model. This supported the rationale for the potential application of NO to the AVF. Thus, we developed a self-assembled NO releasing nanomatrix gel and applied it perivascularly at the arteriovenous anastomosis immediately following rat AVF creation to investigate its therapeutic effect on AVF development. We demonstrated that the NO releasing nanomatrix gel inhibited intimal hyperplasia formation (more than 70% reduction), as well as improved vascular outward remodeling (increased vein diameter) and hemodynamic adaptation (lower wall shear stress approaching the preoperative level and less vorticity). Therefore, direct application of the NO releasing nanomatrix gel to the AVF anastomosis immediately following AVF creation may enhance AVF development, thereby providing long-term and durable vascular access for hemodialysis.


Asunto(s)
Fístula Arteriovenosa , Remodelación Vascular , Animales , Fístula Arteriovenosa/terapia , Humanos , Hiperplasia , Ratones , Óxido Nítrico , Ratas , Roedores
7.
Front Bioeng Biotechnol ; 9: 779043, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926425

RESUMEN

Arteriovenous fistula (AVF) is essential for chronic kidney disease (CKD) patients on hemodialysis, but treatment for AVF maturation failure remains an unmet clinical need. Successful AVF remodeling occurs through sufficient lumen expansion to increase AVF blood flow and lumen area. Aberrant blood flow is thought to impair AVF remodeling, but previous literature has largely focused on hemodynamics averaged over the entire AVF or at a single location. We hypothesized that hemodynamics is heterogeneous, and thus any treatment's effect size is heterogeneous in the AVF. To test our hypothesis, we used the PDE5A inhibitor sildenafil to treat AVFs in a rat model and performed magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) to generate a detailed spatial profile of hemodynamics in AVFs. 90 mg/kg of sildenafil was administered to rats in their drinking water for 14 days. On day 14 femoral AVFs were created in rats and sildenafil treatment continued for another 21 days. 21 days post-AVF creation, rats underwent non-contrast MRI for CFD and geometrical analysis. Lumen cross-sectional area (CSA) and flow rate were used to quantify AVF remodeling. Parameters used to describe aberrant blood flow include velocity magnitude, wall shear stress (WSS), oscillatory shear index (OSI), and vorticity. Geometrical parameters include arterial-venous (A-V) distance, anastomosis angle, tortuosity, and nonplanarity angle magnitude. When averaged across the entire AVF, sildenafil treated rats had significantly higher CSA, flow rate, velocity, WSS, OSI, and vorticity than control rats. To analyze heterogeneity, the vein was separated into zones: 0-5, 5-10, 10-15, and 15-20 mm from the anastomosis. In both groups: 1) CSA increased from the 0-5 to 15-20 zone; 2) velocity, WSS, and vorticity were highest in the 0-5 zone and dropped significantly thereafter; and 3) OSI increased at the 5-10 zone and then decreased gradually. Thus, the effect size of sildenafil on AVF remodeling and the relationship between hemodynamics and AVF remodeling depend on location. There was no significant difference between control and sildenafil groups for the other geometric parameters. Rats tolerated sildenafil treatment well, and our results suggest that sildenafil may be a safe and effective therapy for AVF maturation.

8.
J Vasc Surg ; 73(5): 1778-1786.e1, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33091518

RESUMEN

OBJECTIVE: An arteriovenous fistula (AVF) is the preferred vascular access for chronic hemodialysis; however, the rates of AVF maturation failure and reintervention remain high. We investigated the AVF geometric parameters and their associations with AVF physiologic maturation and reintervention in a prospective multicenter study. METHODS: From 2011 to 2016, patients undergoing vein end-to-artery side upper extremity AVF creation surgery were recruited. Contrast-free dark blood and phase-contrast magnetic resonance imaging (MRI) scans were performed using 3.0T scanners to obtain the AVF lumen geometry and flow rates, respectively, at postoperative day 1, week 6, and month 6. The arteriovenous anastomosis angle, nonplanarity, and tortuosity of the fistula were calculated according to the lumen centerlines. AVFs were considered physiologically matured if, using the week 6 MRI data, the flow rate was ≥500 mL/min and the minimum vein lumen diameter was ≥5 mm. The associations of these geometric parameters with AVF maturation and reintervention due to perianastomotic and mid-vein stenosis within 1 year were assessed. RESULTS: A total of 111 patients had a usable day 1 MRI scan, with most having upper arm AVFs (n = 73). Compared with the forearm AVFs, upper arm AVFs had greater anastomosis angles (P < .001), larger deviations from a plane (nonplanarity; P = .002), and more prominent tortuosity (P = .038) at day 1. These parameters significantly increased between day 1 and week 6 in upper arm AVFs. In contrast, significant changes in these parameters in forearm AVFs were not observed. The rate of maturation was 54% and 86% for forearm and upper arm AVFs, respectively. None of the geometric parameters at day 1 were associated with AVF maturation in either location. The rate of reintervention was 24% and 30% for forearm and upper arm AVFs, respectively, with a larger nonplanarity angle at day 1 associated with less reintervention (30° ± 15° vs 21° ± 10°; P = .034) in upper arm AVFs only. This relationship was unchanged after adjusting for age, sex, race, dialysis status, or diabetes. CONCLUSIONS: In our study, upper arm fistulas had a larger anastomosis angle, were more nonplanar, and had more tortuous veins than forearm fistulas. For upper arm fistulas, a larger nonplanarity angle is associated with a lower rate of reintervention within 1 year. Once confirmed, vascular surgeons could consider increasing the nonplanarity angle by incorporating a tension-free gentle curvature in the proximal segment of the mobilized vein to reduce reinterventions when creating an upper arm fistula.


Asunto(s)
Derivación Arteriovenosa Quirúrgica/efectos adversos , Oclusión de Injerto Vascular/terapia , Fallo Renal Crónico/terapia , Diálisis Renal , Retratamiento , Extremidad Superior/irrigación sanguínea , Grado de Desobstrucción Vascular , Adulto , Anciano , Femenino , Oclusión de Injerto Vascular/diagnóstico por imagen , Oclusión de Injerto Vascular/etiología , Oclusión de Injerto Vascular/fisiopatología , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos
9.
Kidney360 ; 1(9): 925-935, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33117991

RESUMEN

BACKGROUND: Arteriovenous fistula (AVF) maturation failure is a significant clinical problem in the hemodialysis population. Geometric parameters of human AVFs were associated with AVF development, but causative studies are lacking. We characterized mouse AVF geometry using endothelial nitric oxide synthase (NOS3) mouse models. METHODS: Carotid-jugular AVFs were created in NOS3 overexpression (OE), knockout (KO), and wild type (WT) mice. At 7 and 21 days postcreation, black-blood magnetic resonance images of AVFs were acquired and used to build three-dimensional reconstructions of AVF lumens. We used these reconstructions to calculate the lumen area, lumen centerline, and centerline-derived parameters: anastomosis angle, tortuosity, nonplanarity angle, and location of maximal distance between the feeding artery and AVF vein. Inter- and intrauser variabilities were also determined. RESULTS: When all mice were considered, increased minimum AVF venous lumen area was accompanied by increased venous tortuosity and increased distance between the artery and vein, with both remaining in-plane with the anastomosis. At day 7, the lumen area of AVFs from all strains was 1.5- to 2.5-fold larger than native veins. Furthermore, at day 21, AVF lumen in NOS3 OE (4.04±1.43 mm2) was significantly larger than KO (2.74±1.34 mm2) (P<0.001) and WT (2.94±1.30 mm2) mice (p<0.001). At day 21, the location of maximal artery-vein distance on the vein was further away from the anastomosis in OE (4.49±0.66 mm) than KO (2.87±0.38 mm) (p=0.001). Other geometric parameters were not significantly different between mouse strains or time points. Inter- and intrauser variabilities were small, indicating the reliability and reproducibility of our protocol. CONCLUSIONS: Our study presents a detailed characterization of mouse AVF geometry, and a robust protocol for future mechanistic studies to investigate the role of molecular pathways in AVF geometry. Identifying a geometry related to desired AVF remodeling can help inform surgery to enhance AVF maturation.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Animales , Fístula Arteriovenosa/metabolismo , Derivación Arteriovenosa Quirúrgica/métodos , Ratones , Óxido Nítrico Sintasa de Tipo III/genética , Reproducibilidad de los Resultados , Venas/metabolismo
10.
ACS Appl Bio Mater ; 1(5): 1620-1627, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34046558

RESUMEN

Silica nanoparticles are extensively used in biomedical applications and consumer products. Little is known about the interaction of these NPs with the endothelium and effect on platelet adhesion under flow conditions in circulation. In this study, we investigated the effect of silica nanoparticles on the endothelium and its inflammation, and subsequent adhesion of flowing platelets in vitro. Platelet counts adhered onto the surface of endothelial cells in the presence of nanoparticles increased at both low and high concentrations of nanoparticles. Preincubation of endothelial cells with nanoparticles also increased platelet adhesion. Interestingly, platelet adhesion onto TNF-α-treated endothelial cells decreased in the presence of nanoparticles at different concentrations as compared with the absence of nanoparticles. We monitored the expression of different endothelial proteins, known to initiate platelet adhesion, in the presence and absence of silica nanoparticles. We found that silica nanoparticles caused changes in the endothelium such as overexpression of PECAM that promoted platelet adhesion to the endothelial cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...