Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 49(1): 184-193, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33016369

RESUMEN

Phosphorus deficiency and excess are concomitant problems in agricultural soils of the mid-Atlantic region. A fundamental understanding of soil P speciation is essential to assess P fate and transport in these soils. Current methods for soil P speciation often rely on sequential chemical extractions, which can introduce artifacts during analysis. To overcome limitations of current methods, this study evaluated synchrotron-based micro-focused X-ray fluorescence (µ-XRF) and X-ray absorption near-edge spectroscopy (µ-XANES) techniques to assess soil P speciation in agricultural soils collected from the mid-Atlantic region of the United States. Three soils with varying chemical and physical properties were analyzed with µ-XRF maps collected at high (12,000 eV) and tender (2240 eV) energies to evaluate colocation of P with Fe, Al, Ca, and Si in soil samples, and µ-XANES spectra were collected at the P K-edge for P hotspots. Combined µ-XRF and µ-XANES analysis was useful for identifying Ca phosphate, Fe phosphate, Al-sorbed P, and Fe-sorbed P species in heterogeneous soil samples. X-ray fluorescence maps were valuable to distinguish Al-oxide sorbed P from Fe-oxide sorbed P species. A low signal-to-noise ratio often limited µ-XANES data collection in regions with diffuse, low concentrations of P. Therefore, some P species may not have been detected during analysis. Even with varying degrees of self-absorption and signal-to-noise ratios in µ-XANES spectra, important inferences regarding P speciation in mid-Atlantic soils were made. This study highlights the potential of µ-XANES analysis for use in environmental and agricultural sciences to provide insights into P fate and transport in soils.


Asunto(s)
Contaminantes del Suelo/análisis , Suelo , Fósforo , Sincrotrones , Espectroscopía de Absorción de Rayos X
2.
Biomaterials ; 179: 71-82, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980076

RESUMEN

Microcalcifications serve as diagnostic markers for breast cancer, yet their formation pathway(s) and role in cancer progression are debated due in part to a lack of relevant 3D culture models that allow studying the extent of cellular regulation over mineralization. Previous studies have suggested processes ranging from dystrophic mineralization associated with cell death to bone-like mineral deposition. Here, we evaluated microcalcification formation in 3D multicellular spheroids, generated from non-malignant, pre-cancer, and invasive cell lines from the MCF10A human breast tumor progression series. The spheroids with greater malignancy potential developed necrotic cores, thus recapitulating spatially distinct viable and non-viable areas known to regulate cellular behavior in tumors in vivo. The spatial distribution of the microcalcifications, as well as their compositions, were characterized using nanoCT, electron-microscopy, and X-ray spectroscopy. Apatite microcalcifications were primarily detected within the viable cell regions and their number and size increased with malignancy potential of the spheroids. Levels of alkaline phosphatase decreased with malignancy potential, whereas levels of osteopontin increased. These findings support a mineralization pathway in which cancer cells induce mineralization in a manner that is linked to their malignancy potential, but that is distinct from physiological osteogenic mineralization.


Asunto(s)
Neoplasias de la Mama/metabolismo , Calcinosis/metabolismo , Fosfatasa Alcalina/metabolismo , Carcinoma Ductal/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Esferoides Celulares/metabolismo , Tomografía por Rayos X
3.
Langmuir ; 27(24): 14930-9, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22047613

RESUMEN

Electrochemical adsorption of SO(2) on platinum is complicated by the change in sulfur oxidation state with potential. Here, we attempt to identify SO(2) adsorption products on catalyst coated membranes (CCMs) at different electrode potentials using a combination of in situ sulfur K-edge XANES (X-ray absorption near-edge structure) spectroscopy and electrochemical techniques. CCMs employed platinum nanoparticles supported on Vulcan carbon (Pt/VC). SO(2) was adsorbed from a SO(2)/N(2) gas mixture while holding the Pt/VC-electrode potential at 0.1, 0.5, 0.7, and 0.9 V vs a reversible hydrogen electrode (RHE). Sulfur adatoms (S(0)) are identified as the SO(2) adsorption products at 0.1 V, while mixtures of S(0), SO(2), and sulfate/bisulfate ((bi)sulfate) ions are suggested as SO(2) adsorption products at 0.5 and 0.7 V. At 0.9 V, SO(2) is completely oxidized to (bi)sulfate ions. The identity of adsorbed SO(2) species on Pt/VC catalysts at different electrode potentials is confirmed by modeling of XANES spectra using FEFF8 and a linear combination of experimental spectra from sulfur standards. Results on SO(2) speciation gained from XANES are used to compare platinum-sulfur electronic interactions for Pt(3)Co/VC versus Pt/VC catalysts in order to understand the difference between the two catalysts in terms of SO(2) contamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...