Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 47(5): 1284-1292, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30272800

RESUMEN

Gypsum has a long history as a soil amendment. Information on how flue gas desulfurization (FGD) gypsum affects soil, water, and plant properties across a range of climates and soils is lacking. We conducted a meta-analysis using data from 10 field sites in the United States (Alabama, Arkansas, Indiana, New Mexico, North Dakota, Ohio, and Wisconsin). Each site used three rates each of mined and FGD gypsums plus an untreated control treatment. Gypsum rates included a presumed optimal agronomic rate plus one rate lower and one rate higher than the optimal. Gypsum was applied once at the beginning of each study, and then data were collected for 2 to 3 yr. The meta-analyses used response ratios () calculated by dividing the treatment value by the control value for crop yield or for each measured element in plant, soil, and vadose water. These values were tested for their significance with values. Most values varied only slightly from 1.00. Gypsum significantly changed more values from 1.00 for vadose water than for soil or crop tissue in terms of numbers of elements affected (11 for water, 7 for soil, and 8 for crop tissue). The highest value for soil was 1.57 (Ca) which was similar for both mined and FGD gypsum, for crop tissue was 1.46 (Sr) for mined gypsum, and for vadose water was 4.22 (S) for FGD gypsum. The large increase in Ca and S is often a desired response to gypsum application. Lowest values occurred in crop tissue for Mg (0.89) with FGD gypsum and for Ni (0.92 or 0.93) with both gypsums. Although some sites showed crop yield responses to gypsum, the overall mean values for mined gypsum (0.987) and for FGD gypsum (1.00) were not significantly different from 1.00 in this short-term study.


Asunto(s)
Agricultura/métodos , Sulfato de Calcio/química , Conservación de los Recursos Naturales , Fertilizantes , Contaminantes del Suelo/química , Plantas , Suelo/química , Estados Unidos
2.
J Environ Qual ; 33(6): 2174-82, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15537940

RESUMEN

Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.


Asunto(s)
Fertilizantes , Nitratos/análisis , Fósforo/análisis , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Agricultura , Porosidad , Lluvia , Suelo , Movimientos del Agua , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...