Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30392, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737238

RESUMEN

Good health and well-being is one of the sustainable development goals (SDGs) that can be achieved through fruit consumption. This study measured cucumber (Cucumis sativus L.) heavy metal concentrations. Inductively coupled plasma-mass spectrometry (ICP-OES) was used to analyze the samples for heavy metal content. The uncertainty and sensitivity analyses of carcinogenic and non-carcinogenic heavy metal intake via cucumber (Cucumis sativus L.) consumption were assessed by Monte Carlo simulation. The mean ± SD levels of Cu, Pb, Zn, Cd, and As were determined to be 157.87 ± 128.54, 33.81 ± 6.27, 288.46 ± 114.59, 35.22 ± 18.67, and 33.6 ± 18.1 µg/kg, respectively. The 95th percentile of HI related to heavy metal intake via cucumber (Cucumis sativus L.) among children and adults were 2.64 and 1.75, respectively. Also, the 95th percentile of ELCR related to heavy metal were 8.26E-4 and 4.14E-3 among children and adults, respectively. The 95th percentile of LTCR of As among adults and As, Cd, and Pb among children were in the WHO target range (1E-04 to 1E-06) so reducing the concentration of them can help to reduce overall LTCR. When HQ and LTCR are below the cut limits, reducing heavy metals in high-consumption meals is a good way to lower them. In general, due to the wide consumption of various fruits, such as cucumber (Cucumis sativus L.), the concentration of environmental pollutants in their edible tissues should be monitored regularly, and the concentration of pollutants in these tissues should be minimized by proper planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA