Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34452470

RESUMEN

While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGE-detected in the Yoruba population of Nigeria-conferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the "emerging" nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunz's critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts.


Asunto(s)
Planificación en Desastres , Fiebre de Lassa/epidemiología , Virus Lassa/fisiología , África Occidental/epidemiología , Planificación en Desastres/métodos , Humanos , Fiebre de Lassa/genética , Fiebre de Lassa/prevención & control , Fiebre de Lassa/virología , Virus Lassa/genética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/inmunología , Nigeria/epidemiología , Pandemias , Polimorfismo Genético , Receptores Virales/genética , Receptores Virales/inmunología
2.
J Vis Exp ; (113)2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27403729

RESUMEN

Here we outline a next-generation RNA sequencing protocol that enables de novo assemblies and intra-host variant calls of viral genomes collected from clinical and biological sources. The method is unbiased and universal; it uses random primers for cDNA synthesis and requires no prior knowledge of the viral sequence content. Before library construction, selective RNase H-based digestion is used to deplete unwanted RNA - including poly(rA) carrier and ribosomal RNA - from the viral RNA sample. Selective depletion improves both the data quality and the number of unique reads in viral RNA sequencing libraries. Moreover, a transposase-based 'tagmentation' step is used in the protocol as it reduces overall library construction time. The protocol has enabled rapid deep sequencing of over 600 Lassa and Ebola virus samples-including collections from both blood and tissue isolates-and is broadly applicable to other microbial genomics studies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Virus ARN , Genoma Viral , ARN Viral , Análisis de Secuencia de ARN
3.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091036

RESUMEN

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Asunto(s)
Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Genoma Viral , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Mutación , Evolución Biológica , Brotes de Enfermedades , Ebolavirus/clasificación , Fiebre Hemorrágica Ebola/transmisión , Humanos , Sierra Leona/epidemiología , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...