Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dent Mater ; 37(11): 1724-1733, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34538503

RESUMEN

OBJECTIVE: This study tested the effects of small leucine-rich proteoglycan (SLRP) proteins on phosphoric acid (PA)-treated dentin bonding overtime and the role of such SLRPs in the remineralization potential of demineralized dentin collagen. METHODS: Coronal dentin sections of human molars were used. SLRPs were either decorin (DCN) or biglycan (BGN) in core or proteoglycan form (with glycosaminoglycans, GAGs). Groups were: No treatment (control), DCN core, DCN + GAGs, BGN core, BGN + GAGs. Samples were etched with PA for 15 s and prior to application of Adper Single Bond Plus and composite buildup an aliquot of the specific SLRPs was applied over dentin. Twenty-four hours or 6 months after the bonding procedure, samples were tested for microtensile bond strength (MTBS). Debonded beams were analyzed by scanning electron microscopy (SEM). For remineralization studies, dentin blocks were fully demineralized, infused with the SLRPs, placed in artificial saliva for 2 weeks, and evaluated by transmission electron microscopy (TEM). RESULTS: MTBS test presented a mean of 51.4 ± 9.1 MPa in control with no statistically significant difference to DCN core (47.6 ± 8.3) and BGN core (48.3 ± 6.5). The full proteoglycan groups DCN + GAGs (27.4 ± 4.5) and BGN + GAGs (36.4 ± 13.6) showed decreased MTBS compared to control (p < 0.001). At 6 months, control or core-treated samples did not have a statistically significant difference in MTBS. However, SLRPs with GAGs showed statistically significant improvement of bonding (62.5 ± 6.0 for DCN and 52.8 ± 8.1 for BGN, p < 0.001) compared to their baseline values. SEM showed that GAGs seem to favor water retention but overtime help remineralization. TEM of demineralized dentin indicated a larger collagen fibril diameter pattern of samples treated with core proteins compared to control and a smaller diameter with DCN + GAGs in water with evidence of mineralization with DCN + GAGS, BGN core and BGN + GAGs. SIGNIFICANCE: In conclusion, core proteins seem not to affect dentin adhesion significantly but the presence of GAGs can be detrimental to immediate bonding. However, after ageing of samples, full proteoglycans, particularly DCN, can significantly improve bonding overtime while promoting remineralization which can prove to be clinically beneficial.


Asunto(s)
Colágeno , Dentina , Matriz Extracelular , Humanos
2.
Eur Arch Paediatr Dent ; 18(4): 263-270, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28779438

RESUMEN

AIMS: To evaluate the chemical characteristics of grape and orange juices, and their erosive potential in the decrease of microhardness and the loss of enamel structure. METHODS: Five grape and orange juices were evaluated for pH, titratable acidity, calcium, phosphate, and fluoride concentration. De-ionised water and Cola soft drink were used as a negative and positive control, respectively. Twelve specimens of bovine enamel were immersed in beverages for 10 min at 37 °C, 3 times/day for 7 days. Erosive potential was quantified using microhardness and loss of enamel structure. Anova One Way, Student's t test, Multiple Regression and Spearman Correlation (p < 0.05) were used to analyse the results. RESULTS: Powdered grape juice showed the lowest pH (3.18 ± 0.03) and pure grape juice presented the highest titratable acidity (5.48 ± 0.06 mL NaOH/100 mL). Fresh orange juice and soya-based grape juice revealed the lowest calcium (0.77 ± 0.12 mmol/L) and phosphate concentrations (0.35 ± 0.06 mmol/L), respectively. Among juices, powdered orange juice caused the greatest decrease in surface microhardness (SMH) (127.99 ± 40.47 ΔSMH) and grape juice from concentrate caused the greatest loss of enamel structure (13.30 ± 3.56 µm). CONCLUSIONS: All of the evaluated juices contributed to dental erosion. Grape juices presented greater erosive potential than orange juices. Pure, powdered and concentrated grape juices showed similar loss of enamel structure to the Cola soft drink. The erosive potential of beverages was statistically correlated to pH, titratable acidity, calcium, phosphate and fluoride concentrations.


Asunto(s)
Citrus sinensis/efectos adversos , Jugos de Frutas y Vegetales/efectos adversos , Erosión de los Dientes/etiología , Vitis/efectos adversos , Calcio/análisis , Fluoruros/análisis , Humanos , Concentración de Iones de Hidrógeno , Fosfatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...