Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 31(12): e4459, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177735

RESUMEN

D3/D2 sub-specificity is a complex problem to solve. Indeed, in the absence of easy structural biology of the G-protein coupled receptors, and despite key progresses in this area, the systematic knowledge of the ligand/receptor relationship is difficult to obtain. Due to these structural biology limitations concerning membrane proteins, we favored the use of directed mutagenesis to document a rational towards the discovery of markedly specific D3 ligands over D2 ligands together with basic binding experiments. Using our methodology of stable expression of receptors in HEK cells, we constructed the gene encoding for 24 mutants and 4 chimeras of either D2 or D3 receptors and expressed them stably. Those cell lines, expressing a single copy of one receptor mutant each, were stably constructed, selected, amplified and the membranes from them were prepared. Binding data at those receptors were obtained using standard binding conditions for D2 and D3 dopamine receptors. We generated 26 new molecules derived from D2 or D3 ligands. Using 8 reference compounds and those 26 molecules, we characterized their binding at those mutants and chimeras, exemplifying an approach to better understand the difference at the molecular level of the D2 and D3 receptors. Although all the individual results are presented and could be used for minute analyses, the present report does not discuss the differences between D2 and D3 data. It simply shows the feasibility of the approach and its potential.


Asunto(s)
Receptores de Dopamina D2 , Receptores de Dopamina D3 , Receptores de Dopamina D3/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Ligandos , Línea Celular , Mutagénesis
2.
Chem Biol Drug Des ; 96(4): 1024-1051, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32394628

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) along with embryonic ectoderm development (EED) and suppressor of zeste 12 (SUZ12), which implements transcriptional repression mainly by depositing trimethylation marks at lysine 27 of histone H3 (H3K27me3). Its catalytic activity is closely correlated with the stability of PRC2, and somatic activating mutation of EZH2 Y641F within the catalytic SET domain drives tumor aggressiveness, drug resistance, and poor prognosis. Here, we report two high-throughput screening (HTS) campaigns targeting EZH2 Y641F and EZH2-EED interaction, respectively. For the EZH2 Y641F mutant, the HTS campaign involved a library of 250,000 compounds using a homogenous time-resolved fluorescence (HTRF) assay and identified 162 hits, while 60,160 compounds were screened against EZH2-EED interaction with a fluorescence polarization (FP) assay resulting in 97 hits. Among the 162 EZH2 Y641F inhibitors, 38 also suppressed EZH2-EED interaction and 80 showed inhibitory effects on the wide-type (WT) EZH2. Meanwhile, 10 of the 97 EZH2-EED interaction inhibitors were active against WT EZH2. These hit compounds provide useful tools for the development of novel PRC2-EZH2 inhibitors targeting its catalytic and non-catalytic activities.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Catálisis , Relación Dosis-Respuesta a Droga , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Polarización de Fluorescencia , Complejo Represivo Polycomb 2/química , Bibliotecas de Moléculas Pequeñas/administración & dosificación
3.
Pharmacol Res Perspect ; 8(1): e00539, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31893123

RESUMEN

Melatonin is a neurohormone that translates the circadian rhythm to the peripheral organs through a series of binding sites identified as G protein-coupled receptors MT1 and MT2. Due to minute amounts of receptor proteins in target organs, the main tool of studies of the melatoninergic system is recombinant expression of the receptors in cellular hosts. Although a number of studies exist on these receptors, studies of several signaling pathways using a large number of melatoninergic compounds are rather limited. We chose to fill this gap to better describe a panel of compounds that have been only partially characterized in terms of functionality. First, we characterized HEK cells expressing MT1 or MT2, and several signaling routes with melatonin itself to validate the approach: GTPγS, cAMP production, internalization, ß-arrestin recruitment, and cell morphology changes (CellKey ® ). Second, we chose 21 compounds from our large melatoninergic chemical library and characterized them using this panel of signaling pathways. Notably, antagonists were infrequent, and their functionality depended largely on the pathway studied. This will permit redefining the availability of molecular tools that can be used to better understand the in situ activity and roles of these receptors.


Asunto(s)
Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT1/antagonistas & inhibidores , Receptor de Melatonina MT2/agonistas , Receptor de Melatonina MT2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Células CHO , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , beta-Arrestinas/metabolismo
4.
Sci Rep ; 8(1): 13167, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177816

RESUMEN

Hibernation is an exceptional physiological response to a hostile environment, characterized by a seasonal period of torpor cycles involving dramatic reductions of body temperature and metabolism, and arousal back to normothermia. As the mechanisms regulating hibernation are still poorly understood, here we analysed the expression of genes involved in energy homeostasis, torpor regulation, and daily or seasonal timing using digital droplet PCR in various central and peripheral tissues sampled at different stages of torpor/arousal cycles in the European hamster. During torpor, the hypothalamus exhibited strongly down-regulated gene expression, suggesting that hypothalamic functions were reduced during this period of low metabolic activity. During both torpor and arousal, many structures (notably the brown adipose tissue) exhibited altered expression of deiodinases, potentially leading to reduced tissular triiodothyronine availability. During the arousal phase, all analysed tissues showed increased expression of the core clock genes Per1 and Per2. Overall, our data indicated that the hypothalamus and brown adipose tissue were the tissues most affected during the torpor/arousal cycle, and that clock genes may play critical roles in resetting the body's clocks at the beginning of the active period.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Nivel de Alerta/genética , Cricetulus/genética , Metabolismo Energético/genética , Hibernación/genética , Hipotálamo/metabolismo , Proteínas Circadianas Period/genética , Animales , Ritmo Circadiano/genética , Cricetulus/metabolismo , Europa (Continente) , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Anotación de Secuencia Molecular , Proteínas Circadianas Period/metabolismo , Triyodotironina/metabolismo
6.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973510

RESUMEN

For many years, it was of interest to identify the sequences encoding the two melatonin receptors (MT1 and MT2) from various species. After publishing the basic molecular characterization of the human, rat, mouse, sheep, and platypus MT1, MT2, or Mel1c receptors, we began cloning the genes from other animals, such as birds, bats, and vipers. The goal was to advance the receptor crystallization, which could greatly contribute the understanding of the sequence/stability relationship. European hamster MT1 receptor was cloned for the first time from this gender, was expressed in stable form in cells, and its binding characterized with a sample of 19 melatonin ligands. Siberian hamster (Phodopus sungorus) expresses a non-functional MT2. We observed that unlike this hamster, the European hamster (Cricetus cricetus) does not have a stop codon in the MT2 sequence. Thus, we undertook the tedious task of cloning the MT2 receptor. We partially succeeded, sequencing the complete exon 2 and a fragment of exon 1 (from putative amino acids 12 to 38 and 77 to 323), after several years of efforts. In order to show that the protein parts we cloned were capable to sustain some binding capacities, we designed a chimeric MT2 receptor using a consensus sequence to replace the unknown amino acids, based on other small rodent MT2 sequences. This chimeric construct could bind melatonin in the nanomolar range. This work is meant to be the basis for attempts from other laboratories of the community to determine the complete natural sequence of the European hamster MT2 receptor. The present work is the first to show that, among the hamsters, if the Siberian is a natural knockout for MT2, the European one is not.


Asunto(s)
Cricetinae/genética , Melatonina/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Codón de Terminación , Exones , Ligandos , Masculino , Unión Proteica , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
PLoS One ; 13(3): e0191904, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29529033

RESUMEN

Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.


Asunto(s)
Melatonina/metabolismo , Ornitorrinco/metabolismo , Receptores de Melatonina/metabolismo , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Clonación Molecular/métodos , Filogenia , Ornitorrinco/genética , Unión Proteica , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/química , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Receptores de Melatonina/química , Receptores de Melatonina/genética
8.
Eur J Pharmacol ; 818: 534-544, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29154938

RESUMEN

Melatonin receptors belong to the family of G-protein coupled receptors. Agonist-induced receptor activation is terminated with the recruitment of ß-arrestin, which leads to receptor internalization. Furthermore, agonist binding induces a shift in cellular shape that translates into a change in the electric impedance of the cell. In the present study, we employed engineered cells to study these internalization-related processes in the context of the two melatonin receptors, MT1 and MT2. To assess these three receptor internalization-related functions and validate the results, we employed four classical ligands of melatonin receptors: the natural agonist melatonin; the super-agonist 2-iodo-melatonin and the two antagonists luzindole and 4-phenyl-2-propionamidotetralin. The assessments confirmed the nature of the agonistic ligands but showed that 4-phenyl-2-propionamidotetralin, a described antagonist, is a biased partial agonist at MT2 with poorer affinity for MT1. The methods are now available to be applied to any receptor system for which multiple signaling pathways must be evaluated for new molecules.


Asunto(s)
Receptores de Melatonina/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Animales , Células CHO , Forma de la Célula , Cricetinae , Cricetulus , Impedancia Eléctrica , Humanos , Transporte de Proteínas
9.
Int J Mol Sci ; 18(7)2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28644418

RESUMEN

The search for melatonin receptor agonists and antagonists specific towards one of the receptor subtypes will extend our understanding of the role of this system in relaying circadian information to the body. A series of compounds derived from a hit compound discovered in a screening process led to powerful agonists specific for one of the isoform of the melatonin receptor namely, MT2. The compounds are based on a poorly explored skeleton in the molecular pharmacology of melatonin. By changing the steric hindrance of one substituent (i.e., from a hydrogen atom to a tributylstannyl group), we identified a possible partial agonist that could lead to antagonist analogues. The functionalities of these compounds were measured with a series of assays, including the binding of GTPγS, the inhibition of the cyclic AMP production, the ß-arrestin recruitment, and the cell shape changes as determined by cellular dielectric spectroscopy (CellKey®). The variations between the compounds are discussed.


Asunto(s)
Receptor de Melatonina MT2/agonistas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Descubrimiento de Drogas , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ligandos , Receptor de Melatonina MT2/antagonistas & inhibidores , Receptor de Melatonina MT2/metabolismo , beta-Arrestinas/metabolismo
10.
Acta Pharmacol Sin ; 38(7): 1024-1037, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28502980

RESUMEN

Recent evidence shows that high glucose levels recruit carbohydrate response element-binding protein, which binds the promoter of thioredoxin-interacting protein (txnip), thereby regulating its expression in ß-cells. Overexpression of txnip not only induces ß-cell apoptosis but also reduces insulin production. Thus, the discovery of compounds that either inhibit TXNIP activity or suppress its expression was the focus of the present study. INS-1E cells stably transfected with either a txnip proximal glucose response element connected to a luciferase reporter plasmid (BG73) or full-length txnip promoter connected to a luciferase reporter plasmid (CL108) were used in primary and secondary high-throughput screening campaigns, respectively. From 256 000 synthetic compounds, a small molecule compound, W2476 [9-((1-(4-acetyl-phenyloxy)-ethyl)-2-)adenine], was identified as a modulator of the TXNIP-regulated signaling pathway following the screening and characterized using a battery of bioassays. The preventive and therapeutic properties of W2476 were further examined in streptozotocin-induced diabetic and diet-induced obese mice. Treatment with W2476 (1, 5, and 15 µmol/L) dose-dependently inhibited high glucose-induced TXNIP expression at the mRNA and protein levels in INS-1E cells and rat pancreatic islets. Furthermore, W2476 treatment prevented INS-1E cells from apoptosis induced by chronic exposure of high glucose and enhanced insulin production in vitro. Oral administration of W2476 (200 mg·kg-1·d-1) rescued streptozotocin-induced diabetic mice by promoting ß-cell survival and enhancing insulin secretion. This therapeutic property of W2476 was further demonstrated by its ability to improve glucose homeostasis and insulin sensitivity in diet-induced obese mice. Thus, chemical intervention of the TXNIP-regulated signaling pathway might present a viable approach to manage diabetes.


Asunto(s)
Adenina/análogos & derivados , Proteínas Portadoras/antagonistas & inhibidores , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Células Secretoras de Insulina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tiorredoxinas/antagonistas & inhibidores , Células 3T3-L1 , Adenina/administración & dosificación , Adenina/química , Adenina/farmacología , Administración Oral , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Relación Dosis-Respuesta a Droga , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Estreptozocina , Relación Estructura-Actividad , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
11.
Eur J Pharmacol ; 803: 11-23, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28336400

RESUMEN

Histaminergic H3 inverse agonists, by stimulating central histamine release, represent attractive drug candidates to treat cognitive disorders. The present studies aimed to describe the mechanistic profile of S 38093 a novel H3 receptors inverse agonist. S 38093 displays a moderate affinity for rat, mouse and human H3 receptors (Ki=8.8, 1.44 and 1.2µM, respectively) with no affinity for other histaminergic receptors. In cellular models, the compound was able to antagonize mice H3 receptors (KB=0.65µM) and to suppress cAMP decrease induced by an H3 agonist via human H3 receptors (KB=0.11µM). The antagonism properties of the compound were confirmed by electrophysiological studies on rat hippocampal slices (from 0.1µM). In cells expressing a high H3 density, S 38093 behaved as a moderate inverse agonist at rat and human H3 receptors (EC50=9 and 1.7µM, respectively). S 38093 was rapidly absorbed in mouse and rat (Tmax=0.25-0.5h), slowly in monkey (2h), with a bioavailability ranging from 20% to 60% and t1/2 ranging from 1.5 to 7.4h. The compound was widely distributed with a moderate volume of distribution and low protein binding. The brain distribution of S 38093 was rapid and high. In mice, S 38093 significantly increased ex vivo N-tele-Methylhistamine cerebral levels from 3mg/kg p.o. and antagonized R-α-Methylhistamine-induced dipsogenia from 10mg/kg i.p. Taken together, these data suggest that S 38093, a novel H3 inverse agonist, is a good candidate for further in vivo evaluations, in particular in animal models of cognition.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Benzamidas/farmacología , Agonismo Inverso de Drogas , Agonistas de los Receptores Histamínicos/farmacocinética , Antagonistas de los Receptores Histamínicos H3/farmacocinética , Receptores Histamínicos H3/metabolismo , Animales , Ácido Araquidónico/metabolismo , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Histamina/metabolismo , Agonistas de los Receptores Histamínicos/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos H3/metabolismo , Antagonistas de los Receptores Histamínicos H3/farmacología , Humanos , Masculino , Ratones , Ratas
12.
Anal Biochem ; 519: 57-70, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993553

RESUMEN

Ubiquitin, a 76 amino acid protein, is a key component that contributes to cellular protein homeostasis. The specificity of this modification is due to a series of enzymes: ligases, attaching the ubiquitin to a lysine, and deubiquitinases, which remove it. More than a hundred of such proteins are implicated in the regulation of protein turnover. Their specificities are only partially understood. We chemically synthesized ubiquitin, attached it to lysines belonging to the protein sequences known to be ubiquitinated. We chose the model protein "murine double minute 2" (mdm2), a ubiquitin ligase, itself ubiquitinated and deubiquitinated. We folded the ubiquitinated peptides and checked their tridimensional conformation. We assessed the use of these substrates with a series of fifteen deubiquitinases to show the potentiality of such an enzymological technique. By manipulating the sequence of the peptide on which ubiquitin is attached, we were able to detect differences in the enzyme/substrate recognition, and to determine that these differences are deubiquitinase-dependent. This approach could be used to understand the substrate/protein relationship between the protagonists of this reaction. The methodology could be customized for a given substrate and used to advance our understanding of the key amino acids responsible for the deubiquitinase specificities.


Asunto(s)
Lisina/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Cromatografía en Gel , Dicroismo Circular , Humanos , Lisina/química , Fragmentos de Péptidos/química , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/química , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina-Proteína Ligasas/metabolismo
13.
Protein Sci ; 25(12): 2225-2242, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27670942

RESUMEN

Synthetic biology (or chemical biology) is a growing field to which the chemical synthesis of proteins, particularly enzymes, makes a fundamental contribution. However, the chemical synthesis of catalytically active proteins (enzymes) remains poorly documented because it is difficult to obtain enough material for biochemical experiments. We chose calstabin, a 107-amino-acid proline isomerase, as a model. We synthesized the enzyme using the native chemical ligation approach and obtained several tens of milligrams. The polypeptide was refolded properly, and we characterized its biophysical properties, measured its catalytic activity, and then crystallized it in order to obtain its tridimensional structure after X-ray diffraction. The refolded enzyme was compared to the recombinant, wild-type enzyme. In addition, as a first step of validating the whole process, we incorporated exotic amino acids into the N-terminus. Surprisingly, none of the changes altered the catalytic activities of the corresponding mutants. Using this body of techniques, avenues are now open to further obtain enzymes modified with exotic amino acids in a way that is only barely accessible by molecular biology, obtaining detailed information on the structure-function relationship of enzymes reachable by complete chemical synthesis.


Asunto(s)
Replegamiento Proteico , Proteínas de Unión a Tacrolimus , Cristalografía por Rayos X , Humanos , Dominios Proteicos , Relación Estructura-Actividad , Proteínas de Unión a Tacrolimus/síntesis química , Proteínas de Unión a Tacrolimus/química
14.
Am J Physiol Heart Circ Physiol ; 311(1): H44-53, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199128

RESUMEN

Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye. In our conditions, the toxicity of the dye was moderate and compatible with episodic recordings for >3 h. We show that the waveforms recorded from a whole well or from a single cell-sized zone are equivalent and make available critical functional parameters that are usually accessible only with gold standard techniques like intracellular microelectrode recording. This approach allows accurate identification of the electrophysiological effects of reference drugs on the different phases of the cardiac action potential as follows: fast depolarization (lidocaine), early repolarization (nifedipine, Bay K8644, and veratridine), late repolarization (dofetilide), and diastolic slow depolarization (ivabradine). Furthermore, the data generated with the FluoVolt dye can be pertinently complemented with a calcium-sensitive dye for deeper characterization of the pharmacological responses. In a semiautomated plate reader, the two probes used simultaneously in 96-well plates provide an easy and powerful multiparametric assay to rapidly and precisely evaluate the cardiotropic profile of compounds for drug discovery or cardiac safety.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Automatización de Laboratorios , Línea Celular , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
15.
J Pharmacol Exp Ther ; 356(3): 681-92, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26759496

RESUMEN

Melatonin exerts a variety of physiologic activities that are mainly relayed through the melatonin receptors MT1 and MT2 Low expressions of these receptors in tissues have led to widespread experimental use of the agonist 2-[(125)I]-iodomelatonin as a substitute for melatonin. We describe three iodinated ligands: 2-(2-[(2-iodo-4,5-dimethoxyphenyl)methyl]-4,5-dimethoxy phenyl) (DIV880) and (2-iodo-N-2-[5-methoxy-2-(naphthalen-1-yl)-1H-pyrrolo[3,2-b]pyridine-3-yl])acetamide (S70254), which are specific ligands at MT2 receptors, and N-[2-(5-methoxy-1H-indol-3-yl)ethyl]iodoacetamide (SD6), an analog of 2-[(125)I]-iodomelatonin with slightly different characteristics. Here, we further characterized these new ligands with regards to their molecular pharmacology. We performed binding experiments, saturation assays, association/dissociation rate measurements, and autoradiography using sheep and rat tissues and recombinant cell lines. Our results showed that [(125)I]-S70254 is receptor, and can be used with both cells and tissue. This radioligand can be used in autoradiography. Similarly, DIV880, a partial agonist [43% of melatonin on guanosine 5'-3-O-(thio)triphosphate binding assay], selective for MT2, can be used as a tool to selectively describe the pharmacology of this receptor in tissue samples. The molecular pharmacology of both human melatonin receptors MT1 and MT2, using a series of 24 ligands at these receptors and the new radioligands, did not lead to noticeable variations in the profiles. For the first time, we described radiolabeled tools that are specific for one of the melatonin receptors (MT2). These tools are amenable to binding experiments and to autoradiography using sheep or rat tissues. These specific tools will permit better understanding of the role and implication in physiopathologic processes of the melatonin receptors.


Asunto(s)
Radioisótopos de Yodo/química , Radioisótopos de Yodo/metabolismo , Melatonina/química , Melatonina/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Animales , Autorradiografía/métodos , Células CHO , Cricetinae , Cricetulus , Humanos , Ratones , Unión Proteica/fisiología , Ensayo de Unión Radioligante/métodos , Ratas , Ovinos
16.
Biochemistry ; 55(1): 38-48, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26701065

RESUMEN

G protein-coupled receptors (GPCRs) are integral membrane proteins that play a pivotal role in signal transduction. Understanding their dynamics is absolutely required to get a clear picture of how signaling proceeds. Molecular characterization of GPCRs isolated in detergents nevertheless stumbles over the deleterious effect of these compounds on receptor function and stability. We explored here the potential of a styrene-maleic acid polymer to solubilize receptors directly from their lipid environment. To this end, we used two GPCRs, the melatonin and ghrelin receptors, embedded in two membrane systems of increasing complexity, liposomes and membranes from Pichia pastoris. The styrene-maleic acid polymer was able, in both cases, to extract membrane patches of a well-defined size. GPCRs in SMA-stabilized lipid discs not only recognized their ligand but also transmitted a signal, as evidenced by their ability to activate their cognate G proteins and recruit arrestins in an agonist-dependent manner. Besides, the purified receptor in lipid discs undergoes all specific changes in conformation associated with ligand-mediated activation, as demonstrated in the case of the ghrelin receptor with fluorescent conformational reporters and compounds from distinct pharmacological classes. Altogether, these data highlight the potential of styrene-maleic stabilized lipid discs for analyzing the molecular bases of GPCR-mediated signaling in a well-controlled membrane-like environment.


Asunto(s)
Proteínas de Unión al GTP/aislamiento & purificación , Lípidos/química , Liposomas/química , Maleatos/química , Nanoestructuras/química , Poliestirenos/química , Animales , Células CHO , Cricetulus , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Modelos Moleculares , Pichia/química , Pichia/metabolismo , Receptores de Ghrelina/química , Receptores de Ghrelina/aislamiento & purificación , Receptores de Ghrelina/metabolismo , Receptores de Melatonina/química , Receptores de Melatonina/aislamiento & purificación , Receptores de Melatonina/metabolismo , Solubilidad
17.
PLoS One ; 9(6): e100616, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959712

RESUMEN

The human melatonin MT1 receptor-belonging to the large family of G protein-coupled receptors (GPCRs)-plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.


Asunto(s)
Membrana Celular/metabolismo , Receptor de Melatonina MT1/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Células CHO , Línea Celular , Membrana Celular/química , Cricetulus , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Ligandos , Unión Proteica , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Levaduras/genética , Levaduras/metabolismo
18.
PLoS One ; 9(3): e92042, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643196

RESUMEN

Salmon calcitonin (sCT) and human calcitonin (hCT) are pharmacologically distinct. However, the reason for the differences is unclear. Here we analyze the differences between sCT and hCT on the human calcitonin receptor (CT(a)R) with respect to activation of cAMP signaling, ß-arrestin recruitment, ligand binding kinetics and internalization. The study was conducted using mammalian cell lines heterologously expressing the human CT(a) receptor. CT(a)R downstream signaling was investigated with dose response profiles for cAMP production and ß-arrestin recruitment for sCT and hCT during short term (<2 hours) and prolonged (up to 72 hours) stimulation. CT(a)R kinetics and internalization was investigated with radio-labeled sCT and hCT ligands on cultured cells and isolated membrane preparations from the same cell line. We found that sCT and hCT are equipotent during short-term stimulations with differences manifesting themselves only during long-term stimulation with sCT inducing a prolonged activation up to 72 hours, while hCT loses activity markedly earlier. The prolonged sCT stimulation of both cAMP accumulation and ß-arrestin recruitment was attenuated, but not abrogated by acid wash, suggesting a role for sCT activated internalized receptors. We have demonstrated a novel phenomenon, namely that two distinct CT(a)R downstream signaling activation patterns are activated by two related ligands, thereby highlighting qualitatively different signaling responses in vitro that could have implications for sCT use in vivo.


Asunto(s)
Calcitonina/metabolismo , AMP Cíclico/metabolismo , Receptores de Calcitonina/metabolismo , Transducción de Señal/genética , Animales , Arrestinas/genética , Arrestinas/metabolismo , Calcitonina/genética , Línea Celular , Regulación de la Expresión Génica , Humanos , Ligandos , Transporte de Proteínas , Receptores de Calcitonina/genética , Salmón , Especificidad de la Especie , Factores de Tiempo , Transgenes , beta-Arrestinas
19.
Bioorg Med Chem ; 22(3): 986-96, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24417958

RESUMEN

Herein we describe the synthesis of novel tricyclic analogues issued from the rigidification of the methoxy group of the benzofuranic analogue of melatonin as MT1 and MT2 ligands. Most of the synthesized compounds displayed high binding affinities at MT1 and MT2 receptors subtypes. Compound 6b (MT1, Ki=0.07nM; MT2, Ki=0.08nM) exhibited with the vinyl 6c and allyl 6d the most interesting derivatives of this series. Functional activity of these compounds showed full agonist activity with EC50 in the nanomolar range. Compounds 6a (EC50=0.8nM and Emax=98%) and 6b (EC50=0.2nM and Emax=121%) exhibited good pharmacological profiles.


Asunto(s)
Benzofuranos/química , Melatonina/análogos & derivados , Amidas/química , Animales , Benzofuranos/síntesis química , Benzofuranos/metabolismo , Células CHO/efectos de los fármacos , Técnicas de Química Sintética , Cricetulus , Células HEK293/efectos de los fármacos , Humanos , Ligandos , Melatonina/agonistas , Melatonina/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Relación Estructura-Actividad
20.
Br J Pharmacol ; 171(1): 186-201, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117008

RESUMEN

BACKGROUND AND PURPOSE: Melatonin receptors have been extensively characterized regarding their affinity and pharmacology, mostly using 2-[(125)I]-melatonin as a radioligand. Although [(3)H]-melatonin has the advantage of corresponding to the endogenous ligand of the receptor, its binding has not been well described. EXPERIMENTAL APPROACH: We characterized [(3)H]-melatonin binding to the hMT1 and hMT2 receptors expressed in a range of cell lines and obtained new insights into the molecular pharmacology of melatonin receptors. KEY RESULTS: The binding of [(3)H]-melatonin to the hMT1 and hMT2 receptors displayed two sites on the saturation curves. These two binding sites were observed on cell membranes expressing recombinant receptors from various species as well as on whole cells. Furthermore, our GTPγS/NaCl results suggest that these sites on the saturation curves correspond to the G-protein coupled and uncoupled states of the receptors, whose pharmacology was extensively characterized. CONCLUSIONS AND IMPLICATIONS: hMT1 and hMT2 receptors spontaneously exist in two states when expressed in cell lines; these states can be probed by [(3)H]-melatonin binding. Overall, our results suggest that physiological regulation of the melatonin receptors may result from complex and subtle mechanisms, a small difference in affinity between the active and inactive states of the receptor, and spontaneous coupling to G-proteins.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Melatonina/metabolismo , Receptor de Melatonina MT2/metabolismo , Animales , Sitios de Unión , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Células HEK293 , Humanos , Cinética , Ligandos , Ratones , Datos de Secuencia Molecular , Ensayo de Unión Radioligante , Ratas , Receptor de Melatonina MT2/efectos de los fármacos , Receptor de Melatonina MT2/genética , Ovinos , Cloruro de Sodio/farmacología , Especificidad de la Especie , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...