Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Rep ; 12(1): 336, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013432

RESUMEN

Haploinsufficiency for the erythroid-specific transcription factor KLF1 is associated with hereditary persistence of fetal hemoglobin (HPFH). Increased HbF ameliorates the symptoms of ß-hemoglobinopathies and downregulation of KLF1 activity has been proposed as a potential therapeutic strategy. However, the feasibility of this approach has been challenged by the observation that KLF1 haploinsufficient individuals with the same KLF1 variant, within the same family, display a wide range of HbF levels. This phenotypic variability is not readily explained by co-inheritance of known HbF-modulating variants in the HBB, HBS1L-MYB and/or BCL11A loci. We studied cultured erythroid progenitors obtained from Maltese individuals in which KLF1 p.K288X carriers display HbF levels ranging between 1.3 and 12.3% of total Hb. Using a combination of gene expression analysis, chromatin accessibility assays and promoter activity tests we find that variation in expression of the wildtype KLF1 allele may explain a significant part of the variability in HbF levels observed in KLF1 haploinsufficiency. Our results have general bearing on the variable penetrance of haploinsufficiency phenotypes and on conflicting interpretations of pathogenicity of variants in other transcriptional regulators such as EP300, GATA2 and RUNX1.


Asunto(s)
Epigénesis Genética , Epigenoma , Epigenómica , Eritroblastos/metabolismo , Haploinsuficiencia , Hemoglobinopatías/genética , Factores de Transcripción de Tipo Kruppel/genética , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina , Eritroblastos/patología , Eritropoyesis/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Predisposición Genética a la Enfermedad , Hemoglobinopatías/sangre , Hemoglobinopatías/diagnóstico , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Malta , Penetrancia , Fenotipo , Cultivo Primario de Células , RNA-Seq
2.
Sci Immunol ; 6(62)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417257

RESUMEN

Tissue-resident memory CD8+ T cells (TRM) constitute a noncirculating memory T cell subset that provides early protection against reinfection. However, how TRM arise from antigen-triggered T cells has remained unclear. Exploiting the TRM-restricted expression of Hobit, we used TRM reporter/deleter mice to study TRM differentiation. We found that Hobit was up-regulated in a subset of LCMV-specific CD8+ T cells located within peripheral tissues during the effector phase of the immune response. These Hobit+ effector T cells were identified as TRM precursors, given that their depletion substantially decreased TRM development but not the formation of circulating memory T cells. Adoptive transfer experiments of Hobit+ effector T cells corroborated their biased contribution to the TRM lineage. Transcriptional profiling of Hobit+ effector T cells underlined the early establishment of TRM properties including down-regulation of tissue exit receptors and up-regulation of TRM-associated molecules. We identified Eomes as a key factor instructing the early bifurcation of circulating and resident lineages. These findings establish that commitment of TRM occurs early in antigen-driven T cell differentiation and reveal the molecular mechanisms underlying this differentiation pathway.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células T de Memoria/inmunología , Proteínas de Dominio T Box/inmunología , Animales , Diferenciación Celular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Cells ; 11(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011617

RESUMEN

Apart from controlling hematopoiesis, the bone marrow (BM) also serves as a secondary lymphoid organ, as it can induce naïve T cell priming by resident dendritic cells (DC). When analyzing DCs in murine BM, we uncovered that they are localized around sinusoids, can (cross)-present antigens, become activated upon intravenous LPS-injection, and for the most part belong to the cDC2 subtype which is associated with Th2/Th17 immunity. Gene-expression profiling revealed that BM-resident DCs are enriched for several c-type lectins, including Dectin-1, which can bind beta-glucans expressed on fungi and yeast. Indeed, DCs in BM were much more efficient in phagocytosis of both yeast-derived zymosan-particles and Aspergillus conidiae than their splenic counterparts, which was highly dependent on Dectin-1. DCs in human BM could also phagocytose zymosan, which was dependent on ß1-integrins. Moreover, zymosan-stimulated BM-resident DCs enhanced the differentiation of hematopoietic stem and progenitor cells towards neutrophils, while also boosting the maintenance of these progenitors. Our findings signify an important role for BM DCs as translators between infection and hematopoiesis, particularly in anti-fungal immunity. The ability of BM-resident DCs to boost neutrophil formation is relevant from a clinical perspective and contributes to our understanding of the increased susceptibility for fungal infections following BM damage.


Asunto(s)
Antígenos Fúngicos/inmunología , Células de la Médula Ósea/inmunología , Células Dendríticas/inmunología , Neutrófilos/inmunología , Anciano , Anciano de 80 o más Años , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos/metabolismo , Humanos , Inflamación/patología , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Antígeno de Macrófago-1/metabolismo , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Zimosan/metabolismo
4.
J Leukoc Biol ; 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33289106

RESUMEN

Dendritic cells (DCs) are key immune modulators and are able to mount immune responses or tolerance. DC differentiation and activation imply a plethora of molecular and cellular responses, including transcriptional changes. PU.1 is a highly expressed transcription factor in DCs and coordinates relevant aspects of DC biology. Due to their role as immune regulators, DCs pose as a promising immunotherapy tool. However, some of their functional features, such as survival, activation, or migration, are compromised due to the limitations to simulate in vitro the physiologic DC differentiation process. A better knowledge of transcriptional programs would allow the identification of potential targets for manipulation with the aim of obtaining "qualified" DCs for immunotherapy purposes. Most of the current knowledge regarding DC biology derives from studies using mouse models, which not always find a parallel in human. In the present study, we dissect the PU.1 transcriptional regulome and interactome in mouse and human DCs, in the steady state or LPS activated. The PU.1 transcriptional regulome was identified by performing PU.1 chromatin immunoprecipitation followed by high-throughput sequencing and pairing these data with RNAsequencing data. The PU.1 interactome was identified by performing PU.1 immunoprecipitation followed by mass spectrometry analysis. Our results portray PU.1 as a pivotal factor that plays an important role in the regulation of genes required for proper DC activation and function, and assures the repression of nonlineage genes. The interspecies differences between human and mouse DCs are surprisingly substantial, highlighting the need to study the biology of human DCs.

5.
Transfus Med Hemother ; 47(1): 61-67, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32110195

RESUMEN

BACKGROUND: Anemia of inflammation (AI) is the most common cause of anemia in the critically ill, but its diagnosis is a challenge. New therapies specific to AI are in development, and they require accurate detection of AI. This study explores the potential of parameters of iron metabolism for the diagnosis of AI during an ICU stay. METHODS: In a nested case-control study, 30 patients developing AI were matched to 60 controls. The iron parameters were determined in plasma samples during an ICU stay. Receiver operating characteristic curves were used to determine the iron parameter threshold with the highest sensitivity and specificity to predict AI. Likelihood ratios as well as positive and negative predictive values were calculated as well. RESULTS: The sensitivity of iron parameters for diagnosing AI ranges between 62 and 76%, and the specificity between 57 and 72%. Iron and transferrin show the greatest area under the curve. Iron shows the highest sensitivity, and transferrin and transferrin saturation display the highest specificity. Hepcidin and ferritin show the lowest specificity. At an actual anemia prevalence of 53%, the diagnostic accuracy of iron, transferrin, and transferrin saturation was fair, with a positive predictive value between 71 and 73%. Combining iron, transferrin, transferrin saturation, hepcidin, and/or ferritin levels did not increase the accuracy of the AI diagnosis. CONCLUSIONS: In this explorative study on the use of different parameters of iron metabolism for diagnosing AI during an ICU stay, low levels of commonly measured markers such as plasma iron, transferrin, and transferrin saturation have the highest sensitivity and specificity and outperform ferritin and hepcidin.

6.
Res Pract Thromb Haemost ; 3(4): 718-732, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31624792

RESUMEN

BACKGROUND: Synthesis of the hemostatic protein von Willebrand factor (VWF) drives formation of endothelial storage organelles called Weibel-Palade bodies (WPBs). In the absence of VWF, angiogenic and inflammatory mediators that are costored in WPBs are subject to alternative trafficking routes. In patients with von Willebrand disease (VWD), partial or complete absence of VWF/WPBs may lead to additional bleeding complications, such as angiodysplasia. Studies addressing the role of VWF using VWD patient-derived blood outgrowth endothelial cells (BOECs) have reported conflicting results due to the intrinsic heterogeneity of patient-derived BOECs. OBJECTIVE: To generate a VWF-deficient endothelial cell model using clustered regularly interspaced short palindromic repeats (CRISPR) genome engineering of blood outgrowth endothelial cells. METHODS: We used CRISPR/CRISPR-associated protein 9 editing in single-donor cord blood-derived BOECs (cbBOECs) to generate clonal VWF -/- cbBOECs. Clones were selected using high-throughput screening, VWF mutations were validated by sequencing, and cells were phenotypically characterized. RESULTS: Two VWF -/- BOEC clones were obtained and were entirely devoid of WPBs, while their overall cell morphology was unaltered. Several WPB proteins, including CD63, syntaxin-3 and the cargo proteins angiopoietin (Ang)-2, interleukin (IL)-6, and IL-8 showed alternative trafficking and secretion in the absence of VWF. Interestingly, Ang-2 was relocated to the cell periphery and colocalized with Tie-2. CONCLUSIONS: CRISPR editing of VWF provides a robust method to create VWF- deficient BOECs that can be directly compared to their wild-type counterparts. Results obtained with our model system confirmed alternative trafficking of several WPB proteins in the absence of VWF and support the theory that increased Ang-2/Tie-2 interaction contributes to angiogenic abnormalities in VWD patients.

7.
Eur J Immunol ; 49(5): 694-708, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30883723

RESUMEN

During acute viral infections in mice, IL-7Rα and KLRG1 together are used to distinguish the short-lived effector cells (SLEC; IL-7Rαlo KLRGhi ) from the precursors of persisting memory cells (MPEC; IL-7Rαhi KLRG1lo ). We here show that these markers can be used to define distinct subsets in the circulation and lymph nodes during the acute phase and in "steady state" in humans. In contrast to the T cells in the circulation, T cells derived from lymph nodes hardly contain any KLRG1-expressing cells. The four populations defined by IL-7Rα and KLRG1 differ markedly in transcription factor, granzyme and chemokine receptor expression. When studying renal transplant recipients experiencing a primary hCMV and EBV infection, we also found that after viral control, during latency, Ki-67-negative SLEC can be found in the peripheral blood in considerable numbers. Thus, combined analyses of IL-7Rα and KLRG1 expression on human herpes virus-specific CD8+ T cells can be used to separate functionally distinct subsets in humans. As a noncycling IL-7Rαlo KLRG1hi population is abundant in healthy humans, we conclude that this combination of markers not only defines short-lived effector cells during the acute response but also stable effector cells that are formed and remain present during latent herpes infections.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Expresión Génica , Lectinas Tipo C/genética , Receptores Inmunológicos/genética , Receptores de Interleucina-7/genética , Adulto , Citomegalovirus/inmunología , Perfilación de la Expresión Génica , Antígenos HLA/genética , Antígenos HLA/inmunología , Herpes Simple/inmunología , Herpes Simple/virología , Humanos , Huésped Inmunocomprometido , Memoria Inmunológica , Inmunofenotipificación , Lectinas Tipo C/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos , Persona de Mediana Edad , Receptores Inmunológicos/metabolismo , Receptores de Interleucina-7/metabolismo , Simplexvirus/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adulto Joven
8.
J Immunol ; 202(8): 2220-2228, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30850477

RESUMEN

Abs can acquire N-linked glycans in their V regions during Ag-specific B cell responses. Among others, these N-linked glycans can affect Ag binding and Ab stability. Elevated N-linked glycosylation has furthermore been associated with several B cell-associated pathologies. Basic knowledge about patterns of V region glycosylation at different stages of B cell development is scarce. The aim of the current study is to establish patterns of N-glycosylation sites in Ab V regions of naive and memory B cell subsets. We analyzed the distribution and acquisition of N-glycosylation sites within Ab V regions of peripheral blood and bone marrow B cells of 12 healthy individuals, eight myasthenia gravis patients, and six systemic lupus erythematosus patients, obtained by next-generation sequencing. N-glycosylation sites are clustered around CDRs and the DE loop for both H and L chains, with similar frequencies for healthy donors and patients. No evidence was found for an overall selection bias against acquiring an N-glycosylation site, except for the CDR3 of the H chain. Interestingly, both IgE and IgG4 subsets have a 2-fold higher propensity to acquire Fab glycans compared with IgG1 or IgA. When expressed as rmAb, 35 out of 38 (92%) nongermline N-glycosylation sites became occupied. These results point toward a differential selection pressure of N-glycosylation site acquisition during affinity maturation of B cells, which depends on the location within the V region and is isotype and subclass dependent. Elevated Fab glycosylation represents an additional hallmark of TH2-like IgG4/IgE responses.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina G , Región Variable de Inmunoglobulina , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Activación de Linfocitos/genética , Linfocitos B/patología , Glicosilación , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Lupus Eritematoso Sistémico/patología
9.
Front Immunol ; 10: 400, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899267

RESUMEN

Tissue-resident memory CD8+ T (TRM) cells that develop in the epithelia at portals of pathogen entry are important for improved protection against re-infection. CD8+ TRM cells within the skin and the small intestine are long-lived and maintained independently of circulating memory CD8+ T cells. In contrast to CD8+ TRM cells at these sites, CD8+ TRM cells that arise after influenza virus infection within the lungs display high turnover and require constant recruitment from the circulating memory pool for long-term persistence. The distinct characteristics of CD8+ TRM cell maintenance within the lungs may suggest a unique program of transcriptional regulation of influenza-specific CD8+ TRM cells. We have previously demonstrated that the transcription factors Hobit and Blimp-1 are essential for the formation of CD8+ TRM cells across several tissues, including skin, liver, kidneys, and the small intestine. Here, we addressed the roles of Hobit and Blimp-1 in CD8+ TRM cell differentiation in the lungs after influenza infection using mice deficient for these transcription factors. Hobit was not required for the formation of influenza-specific CD8+ TRM cells in the lungs. In contrast, Blimp-1 was essential for the differentiation of lung CD8+ TRM cells and inhibited the differentiation of central memory CD8+ T (TCM) cells. We conclude that Blimp-1 rather than Hobit mediates the formation of CD8+ TRM cells in the lungs, potentially through control of the lineage choice between TCM and TRM cells during the differentiation of influenza-specific CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Pulmón/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/inmunología , Factores de Transcripción/inmunología , Animales , Diferenciación Celular/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología
10.
Eur J Immunol ; 49(6): 853-872, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30891737

RESUMEN

BM has been put forward as a major reservoir for memory CD8+  T cells. In order to fulfill that function, BM should "store" memory CD8+ T cells, which in biological terms would require these "stored" memory cells to be in disequilibrium with the circulatory pool. This issue is a matter of ongoing debate. Here, we unequivocally demonstrate that murine and human BM harbors a population of tissue-resident memory CD8+ T (TRM ) cells. These cells develop against various pathogens, independently of BM infection or local antigen recognition. BM CD8+ TRM cells share a transcriptional program with resident lymphoid cells in other tissues; they are polyfunctional cytokine producers and dependent on IL-15, Blimp-1, and Hobit. CD8+ TRM cells reside in the BM parenchyma, but are in close contact with the circulation. Moreover, this pool of resident T cells is not size-restricted and expands upon peripheral antigenic re-challenge. This works extends the role of the BM in the maintenance of CD8+ T cell memory to include the preservation of an expandable reservoir of functional, non-recirculating memory CD8+ T cells, which develop in response to a large variety of peripheral antigens.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL
11.
J Proteomics ; 192: 89-101, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30153514

RESUMEN

The vascular endothelium provides a unique interaction plane for plasma proteins and leukocytes in inflammation. The pro-inflammatory cytokines Tumor Necrosis Factor α (TNFα) and interleukin 1ß (IL-1ß) have a profound effect on endothelial cells, which includes increased levels of adhesion molecules and a disrupted barrier function. To assess the endothelial response to these cytokines at the protein level, we evaluated changes in the whole proteome, cell surface proteome and phosphoproteome after 24 h of cytokine treatment. The effects of TNFα and IL-1ß on endothelial cells were strikingly similar and included changes in proteins not previously associated with endothelial inflammation. Temporal profiling revealed time-dependent proteomic changes, including a limited number of early responsive proteins such as adhesion receptors ICAM1 and SELE. In addition, this approach uncovered a greater number of late responsive proteins, including proteins related to self-antigen peptide presentation, and a transient increase in ferritin. Peptide-based cell surface proteomics revealed extensive changes at the cell surface, which were in agreement with the whole proteome. In addition, site-specific changes within ITGA5 and ICAM1 were detected. Combined, our integrated proteomic data provide detailed information on endothelial inflammation, emphasize the role of the extracellular matrix therein, and include potential targets for therapeutic intervention. SIGNIFICANCE: Pro-inflammatory cytokines induce the expression of cell adhesion molecules in vascular endothelial cells. These molecules mediate the adhesion and migration of immune cells across the vessel wall, which is a key process to resolve infections in the underlying tissue. Dysregulation of endothelial inflammation can contribute to vascular diseases and the vascular endothelium is therefore an attractive target to control inflammation. Current strategies targeting endothelial adhesion molecules, including PECAM, CD99, ICAM1 and VCAM1 do not completely prevent transmigration. To identify additional therapeutic targets, we mapped the endothelial proteome after pro-inflammatory cytokine treatment. In addition to the whole proteome, we assessed the surface proteome to focus on cell adhesion molecules, and the phosphoproteome to uncover protein activation states. Here, we present an integrated overview of affected processes which further improves our understanding of endothelial inflammation and may eventually aid in therapeutic intervention of imbalanced inflammation.


Asunto(s)
Moléculas de Adhesión Celular/biosíntesis , Células Endoteliales/metabolismo , Interleucina-1beta/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Células Cultivadas , Células Endoteliales/patología , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Proteómica
12.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29899088

RESUMEN

Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins, such as type I interferons, interleukin-6 (IL-6), or tumor necrosis factor alpha (TNF-α). In the present study, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for the capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSVs) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication, not entry. Importantly, an antiviral interferon signature was completely absent in FGF16-treated cells. Nevertheless, the antiviral effect of FGF16 is broad, as it was evident on multiple cell types and also on infection by coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy.IMPORTANCE Viruses infect human cells in order to replicate, while human cells aim to resist infection. Several cellular antiviral programs have therefore evolved to resist infection. Knowledge of these programs is essential for the design of antiviral therapeutics in the future. The induction of antiviral programs is often initiated by secreted proteins, such as interferons. We hypothesized that other secreted proteins may also promote resistance to viral infection. Thus, we tested 756 human secreted proteins for the capacity to inhibit two pseudotypes of vesicular stomatitis virus (VSV). In this secretome screen on viral infection, we identified fibroblast growth factor 16 (FGF16) as a novel antiviral against multiple VSV pseudotypes as well as coxsackievirus. Subsequent testing of other FGF family members revealed that FGF signaling generally inhibits viral infection. This finding may lead to the development of new antivirals and may also be applicable for enhancing oncolytic virus therapy.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Virus de la Estomatitis Vesicular Indiana/fisiología , Replicación Viral/efectos de los fármacos , Técnicas de Cultivo de Célula , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Biblioteca de Genes , Células HEK293 , Células Hep G2 , Humanos , Biosíntesis de Proteínas , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Internalización del Virus
13.
Ann Intensive Care ; 8(1): 56, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29717382

RESUMEN

BACKGROUND: Anemia occurring as a result of inflammatory processes (anemia of inflammation, AI) has a high prevalence in critically ill patients. Knowledge on changes in iron metabolism during the course of AI is limited, hampering the development of strategies to counteract AI. This case control study aimed to investigate iron metabolism during the development of AI in critically ill patients. METHODS: Iron metabolism in 30 patients who developed AI during ICU stay was compared with 30 septic patients with a high Hb and 30 non-septic patients with a high Hb. Patients were matched on age and sex. Longitudinally collected plasma samples were analyzed for levels of parameters of iron metabolism. A linear mixed model was used to assess the predictive values of the parameters. RESULTS: In patients with AI, levels of iron, transferrin and transferrin saturation showed an early decrease compared to controls with a high Hb, already prior to the development of anemia. Ferritin, hepcidin and IL-6 levels were increased in AI compared to controls. During AI development, erythroferrone decreased. Differences in iron metabolism between groups were not influenced by APACHE IV score. CONCLUSIONS: The results show that in critically ill patients with AI, iron metabolism is already altered prior to the development of anemia. Levels of iron regulators in AI differ from septic controls with a high Hb, irrespective of disease severity. AI is characterized by high levels of hepcidin, ferritin and IL-6 and low levels of iron, transferrin and erythroferrone.

14.
J Inherit Metab Dis ; 41(2): 169-180, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29238895

RESUMEN

Combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA) is a devastating neurometabolic disorder, usually lethal in the first years of life. Autosomal recessive mutations in the SLC25A1 gene, which encodes the mitochondrial citrate carrier (CIC), were previously detected in patients affected with combined D/L-2-HGA. We showed that transfection of deficient fibroblasts with wild-type SLC25A1 restored citrate efflux and decreased intracellular 2-hydroxyglutarate levels, confirming that deficient CIC is the cause of D/L-2-HGA. We developed and implemented a functional assay and applied it to all 17 missense variants detected in a total of 26 CIC-deficient patients, including eight novel cases, showing reduced activities of varying degrees. In addition, we analyzed the importance of residues affected by these missense variants using our existing scoring system. This allowed not only a clinical and biochemical overview of the D/L-2-HGA patients but also phenotype-genotype correlation studies.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Encefalopatías Metabólicas Innatas/metabolismo , Ácido Cítrico/metabolismo , Glutaratos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Bioensayo/métodos , Encefalopatías Metabólicas Innatas/genética , Células Cultivadas , Preescolar , Análisis Mutacional de ADN , Femenino , Fibroblastos , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Mutación Missense , Transportadores de Anión Orgánico , Fenotipo , Conformación Proteica , Relación Estructura-Actividad
15.
J Proteome Res ; 16(10): 3567-3575, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28823163

RESUMEN

It has been proposed that differences may exist between umbilical cord blood (CB) platelets and adult peripheral blood (APB) platelets, including altered protein levels of the main platelet integrins. We have now compared the protein expression profiles of CB and APB platelets employing a label-free comparative proteomics approach. Aggregation studies showed that CB platelets effectively aggregate in the presence of thromboxane A2 analogue, collagen, and peptide agonists of the proteinase-activated receptors 1 and 4. In agreement with previous studies, higher concentrations of the agonists were required to initiate aggregation in the CB platelets. Mass spectrometry analysis revealed no significant difference in the expression levels of critical platelet receptors like glycoprotein (GP)Ib, GPV, GPIX, and integrin αIIbß3. This was confirmed using flow cytometry-based approaches. Gene ontology enrichment analysis revealed that elevated proteins in CB platelets were in particular enriched in proteins contributing to mitochondrial energy metabolism processes. The reduced proteins were enriched in proteins involved in, among others, platelet degranulation and activation. In conclusion, this study reveals that the CB and APB platelets are distinct. In particular, changes were observed for proteins that belong to metabolic and energy generation processes and not for the critical adhesive platelet integrins and glycoproteins.


Asunto(s)
Plaquetas/metabolismo , Sangre Fetal/metabolismo , Agregación Plaquetaria/genética , Proteómica , Adulto , Colágeno/metabolismo , Femenino , Humanos , Recién Nacido , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Activación Plaquetaria/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Transcriptoma/genética
16.
J Leukoc Biol ; 102(4): 1035-1054, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28733463

RESUMEN

Crosstalk between complement component 5a receptors (C5aRs) and TLRs in dendritic cells (DCs) occurs upon pathogen invasion; however, studies on C5aR and TLR crosstalk mainly focused on the modulating effect of C5a on TLR-induced cytokine production. To elucidate the breadth of C5aR and TLR4 crosstalk, the effect of simultaneous treatment with C5a and LPS was investigated in human monocyte-derived DCs (moDCs) 2 h after stimulation using whole transcriptome sequencing analysis. Although the effect of C5a on hallmark genes defining TLR4-induced DC maturation was limited at this time point, RNA sequencing analysis revealed a great variety of novel C5a targets, of which many interfere with TLR4-mediated immune activation. Analysis of functional relationships among these genes uncovered induction of a central immune regulatory network upon C5aR and TLR4 crosstalk, involving the transcription factors forkhead box (FOX)O1 and FOXO3 and the signaling molecules serum- and glucocorticoid-inducible kinase (SGK1), ribosomal S6 kinase 2 (RSK2), and PI3Kß. C5aR and TLR crosstalk, furthermore, yielded down-regulation of mainly proinflammatory network branches, including IL-12B, IL-2Rα (IL-2RA), and jagged 1 (JAG1) and cooperative induction of predominantly anti-inflammatory network branches, including sphingosine kinase 1 (SPHK1), ß2 adrenergic receptor (ADRB2), gastric inhibitory polypeptide receptor (GIPR), and four-and-a-half Lin11, Isl-1, and Mec-3 domains protein 2 (FHL2). Together, these data point toward induction of generalized immune regulation of DC function. Motif enrichment analysis indicate a prominent role for basic leucine zipper (bZIP) and IFN regulatory factor 4 (IRF4) transcription factors upon C5aR and TLR4 crosstalk. Additionally, differences were observed in the modulating capacity of C5a on DCs in the absence or presence of a pathogen (TLR stimulus). Our findings shed new light on the depth and complexity of C5aR and TLR4 crosstalk and provide new foci of research for future studies.


Asunto(s)
Células Dendríticas/inmunología , Proteína Forkhead Box O1/inmunología , Proteína Forkhead Box O3/inmunología , Proteínas Inmediatas-Precoces/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Receptor de Anafilatoxina C5a/inmunología , Proteínas Quinasas S6 Ribosómicas 90-kDa/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Humanos
19.
Mol Inform ; 36(5-6)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28000438

RESUMEN

Gene expression profiling followed by gene ontology (GO) term enrichment analysis can generate long lists of significant GO terms. To interpret these results and get biological insight in the data, filtering and rearranging these long lists of GO terms might be desirable. The R package gogadget provides functions to modify GO analysis results, with a simple filter strategy. Furthermore, it groups redundant GO terms with hierarchical clustering and presents the results in a colorful heatmap. The filtered GO term enrichment results can also be exported by the package for subsequent analysis in Cytoscape Enrichment Map. The R package is freely available under the terms of the GNU GPLv3 at https://sourceforge.net/projects/gogadget/.


Asunto(s)
Ontología de Genes , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos
20.
Nat Immunol ; 17(12): 1467-1478, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27776108

RESUMEN

Tissue-resident memory T cells (TRM cells) in the airways mediate protection against respiratory infection. We characterized TRM cells expressing integrin αE (CD103) that reside within the epithelial barrier of human lungs. These cells had specialized profiles of chemokine receptors and adhesion molecules, consistent with their unique localization. Lung TRM cells were poised for rapid responsiveness by constitutive expression of deployment-ready mRNA encoding effector molecules, but they also expressed many inhibitory regulators, suggestive of programmed restraint. A distinct set of transcription factors was active in CD103+ TRM cells, including Notch. Genetic and pharmacological experiments with mice revealed that Notch activity was required for the maintenance of CD103+ TRM cells. We have thus identified specialized programs underlying the residence, persistence, vigilance and tight control of human lung TRM cells.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Memoria Inmunológica , Subtipo H3N2 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Infecciones del Sistema Respiratorio/inmunología , Animales , Antígenos CD/metabolismo , Células Cultivadas , Femenino , Humanos , Cadenas alfa de Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Receptor Notch1/genética , Receptor Notch2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...