Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Noncoding RNA ; 1(3): 246-265, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29861426

RESUMEN

Macro long non-coding RNAs (lncRNAs) play major roles in gene silencing in inprinted gene clusters. Within the imprinted Gnas cluster, the paternally expressed Nespas lncRNA downregulates its sense counterpart Nesp. To explore the mechanism of action of Nespas, we generated two new knock-in alleles to truncate Nespas upstream and downstream of the Nesp promoter. We show that Nespas is essential for methylation of the Nesp differentially methylated region (DMR), but higher levels of Nespas are required for methylation than are needed for downregulation of Nesp. Although Nespas is transcribed for over 27 kb, only Nespas transcript/transcription across a 2.6 kb region that includes the Nesp promoter is necessary for methylation of the Nesp DMR. In both mutants, the levels of Nespas were extraordinarily high, due at least in part to increased stability, an effect not seen with other imprinted lncRNAs. However, even when levels were greatly raised, Nespas remained exclusively cis-acting. We propose Nespas regulates Nesp methylation and expression to ensure appropriate levels of expression of the protein coding transcripts Gnasxl and Gnas on the paternal chromosome. Thus, Nespas mediates paternal gene expression over the entire Gnas cluster via a single gene, Nesp.

2.
Blood ; 111(6): 3005-14, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18184866

RESUMEN

Transcription factors such as Scl/Tal1, Lmo2, and Runx1 are essential for the development of hematopoietic stem cells (HSCs). However, the precise mechanisms by which these factors interact to form transcriptional networks, as well as the identity of the genes downstream of these regulatory cascades, remain largely unknown. To this end, we generated an Scl(-/-) yolk sac cell line to identify candidate Scl target genes by global expression profiling after reintroduction of a TAT-Scl fusion protein. Bioinformatics analysis resulted in the identification of 9 candidate Scl target transcription factor genes, including Runx1 and Runx3. Chromatin immunoprecipitation confirmed that both Runx genes are direct targets of Scl in the fetal liver and that Runx1 is also occupied by Scl in the yolk sac. Furthermore, binding of an Scl-Lmo2-Gata2 complex was demonstrated to occur on the regions flanking the conserved E-boxes of the Runx1 loci and was shown to transactivate the Runx1 element. Together, our data provide a key component of the transcriptional network of early hematopoiesis by identifying downstream targets of Scl that can explain key aspects of the early Scl(-/-) phenotype.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Hígado/embriología , Hígado/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Saco Vitelino/embriología , Saco Vitelino/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Separación Celular , Secuencia Conservada , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas con Dominio LIM , Metaloproteínas/genética , Metaloproteínas/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Unión Proteica , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Alineación de Secuencia , Proteína 1 de la Leucemia Linfocítica T Aguda
3.
Blood ; 110(13): 4188-97, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17823307

RESUMEN

The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny, its transcriptional regulation is of high interest but is largely undefined. In this study, we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly, transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo, suggesting that it functions as a crucial cis-regulatory element that integrates the Gata, Ets, and SCL transcriptional networks to initiate HSC generation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Factor de Transcripción GATA2/fisiología , Células Madre Hematopoyéticas/citología , Proteína Proto-Oncogénica c-ets-1/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Elementos de Facilitación Genéticos/fisiología , Factor de Transcripción GATA2/metabolismo , Proteínas con Dominio LIM , Metaloproteínas/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda
4.
Nat Genet ; 38(3): 350-5, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16462745

RESUMEN

Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Impresión Genómica , ARN sin Sentido/genética , ARN no Traducido/genética , Transcripción Genética , Animales , Cromograninas , Metilación de ADN , Exones , Femenino , Masculino , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Eliminación de Secuencia
5.
Nat Genet ; 36(8): 894-9, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15273687

RESUMEN

Genomic imprinting brings about allele-specific silencing according to parental origin. Silencing is controlled by cis-acting regulatory regions that are differentially marked during gametogenesis and can act over hundreds of kilobases to silence many genes. Two candidate imprinting control regions (ICRs) have been identified at the compact imprinted Gnas cluster on distal mouse chromosome 2, one at exon 1A upstream of Gnas itself and one covering the promoters for Gnasxl and the antisense Nespas (ref. 8). This imprinted cluster is complex, containing biallelic, maternally and paternally expressed transcripts that share exons. Gnas itself is mainly biallelically expressed but is weakly paternally repressed in specific tissues. Here we show that a paternally derived targeted deletion of the germline differentially methylated region at exon 1A abolishes tissue-specific imprinting of Gnas. This rescues the abnormal phenotype of mice with a maternally derived Gnas mutation. Imprinting of alternative transcripts, Nesp, Gnasxl and Nespas (ref. 13), in the cluster is unaffected. The results establish that the differentially methylated region at exon 1A contains an imprinting control element that specifically regulates Gnas and comprises a characterized ICR for a gene that is only weakly imprinted in a minority of tissues. There must be a second ICR regulating the alternative transcripts.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Impresión Genómica , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Cromograninas , Metilación de ADN , Marcación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Especificidad de Órganos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA