Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 702, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937491

RESUMEN

We present light measurements in Arctic sea ice obtained during the year-long MOSAiC drift through the central Arctic Ocean in 2019-2020. Such measurements are important as sea ice plays a fundamental role in the Arctic climate and ecosystem. The partitioning of solar irradiance determines the availability of radiation energy for thermodynamic processes and primary productivity. However, observations of light partitioning along the vertical path through the ice are rare. The data we present were collected by two measurement systems, the lightharp and the lightchain, both measuring autonomously multi-spectral light intensity in different depths within the ice. We present the dataset, retrieval methods for derived optical properties, and the conversion into the final, freely available data product, following standardized conventions. We particularly focus on the specifications of the newly developed lightharp system. Combined with the interdisciplinary and multi-instrument setup of MOSAiC, we expect great potential of the dataset to foster our understanding of light transmission and reflection in the sea-ice cover and interactions with physical sea-ice properties and the polar ecosystem.

2.
Nat Commun ; 14(1): 3139, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280196

RESUMEN

The sixth assessment report of the IPCC assessed that the Arctic is projected to be on average practically ice-free in September near mid-century under intermediate and high greenhouse gas emissions scenarios, though not under low emissions scenarios, based on simulations from the latest generation Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Here we show, using an attribution analysis approach, that a dominant influence of greenhouse gas increases on Arctic sea ice area is detectable in three observational datasets in all months of the year, but is on average underestimated by CMIP6 models. By scaling models' sea ice response to greenhouse gases to best match the observed trend in an approach validated in an imperfect model test, we project an ice-free Arctic in September under all scenarios considered. These results emphasize the profound impacts of greenhouse gas emissions on the Arctic, and demonstrate the importance of planning for and adapting to a seasonally ice-free Arctic in the near future.

3.
J Adv Model Earth Syst ; 11(4): 998-1038, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32742553

RESUMEN

A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.

4.
Curr Clim Change Rep ; 4(4): 407-416, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30931246

RESUMEN

PURPOSE OF REVIEW: The observed substantial loss of Arctic sea ice has raised prospects of a seasonally ice-free Arctic Ocean within the foreseeable future. In this review, we summarize our current understanding of the most likely trajectory of the Arctic sea-ice cover towards this state. RECENT FINDINGS: The future trajectory of the Arctic sea-ice cover can be described through a deterministic component arising primarily from future greenhouse gas emissions, and a chaotic component arising from internal variability. The deterministic component is expected to cause a largely ice-free Arctic Ocean during summer for less than 2 ∘C global warming relative to pre-industrial levels. To keep chances below 5 % that the Arctic Ocean will largely be ice free in a given year, total future CO2 emissions must remain below 500 Gt. SUMMARY: The Arctic Ocean will become ice free during summer before mid-century unless greenhouse gas emissions are rapidly reduced.

5.
Science ; 354(6313): 747-750, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27811286

RESUMEN

Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Because climate-model simulations of the sea-ice loss differ substantially, we used a robust linear relationship between monthly-mean September sea-ice area and cumulative carbon dioxide (CO2) emissions to infer the future evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a sustained loss of 3 ± 0.3 square meters of September sea-ice area per metric ton of CO2 emission. On the basis of this sensitivity, Arctic sea ice will be lost throughout September for an additional 1000 gigatons of CO2 emissions. Most models show a lower sensitivity, which is possibly linked to an underestimation of the modeled increase in incoming longwave radiation and of the modeled transient climate response.


Asunto(s)
Dióxido de Carbono/análisis , Calentamiento Global , Efecto Invernadero , Cubierta de Hielo , Regiones Árticas , Simulación por Computador , Humanos , Modelos Teóricos , Estaciones del Año
6.
Philos Trans A Math Phys Eng Sci ; 373(2052)2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26347535

RESUMEN

The usefulness of a climate-model simulation cannot be inferred solely from its degree of agreement with observations. Instead, one has to consider additional factors such as internal variability, the tuning of the model, observational uncertainty, the temporal change in dominant processes or the uncertainty in the forcing. In any model-evaluation study, the impact of these limiting factors on the suitability of specific metrics must hence be examined. This can only meaningfully be done relative to a given purpose for using a model. I here generally discuss these points and substantiate their impact on model evaluation using the example of sea ice. For this example, I find that many standard metrics such as sea-ice area or volume only permit limited inferences about the shortcomings of individual models.

8.
Proc Natl Acad Sci U S A ; 106(49): 20590-5, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19884496

RESUMEN

We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA