Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 27(2): 337-347, Abr. 2024. ilus
Artículo en Inglés | IBECS | ID: ibc-232284

RESUMEN

The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50–100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Microbiología , Arabidopsis/microbiología , Tolerancia a la Sal , Chenopodiaceae , Bacterias
2.
Int Microbiol ; 27(2): 337-347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37392309

RESUMEN

The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50-100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.


Asunto(s)
Arabidopsis , Chenopodiaceae , Arabidopsis/microbiología , Sequías , Tolerancia a la Sal , Bacterias , Plantas , Estrés Fisiológico
3.
World J Microbiol Biotechnol ; 39(1): 9, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36369477

RESUMEN

Saffron crocus is a sterile plant species that propagates vegetatively, and consequently, narrow genetic variation is detected in this species. Besides the narrow genetic variation, there is significant phenotypic variation in different traits in this plant. Here we tested this hypothesis that plant microbiome is a major contributor to the phenotypic variation. We focused our analysis on culturable bacteria that were dominant in saffron fields with high stigma yield compared to the fields with low stigma yield. Following this strategy, four rhizospheric (Cupriavidus metallidurans, Bacillus sp., Solibacillus sp., and Planococcus sp.) and two endophytic bacteria (Serratia oryzae and S. odorifera) were identified. The effects of the bacteria on the growth and development of the model plant Arabidopsis were assessed both in agar plate and pot assays. Results showed that these bacteria influence the vegetative growth and flowering time of Arabidopsis. In the next step, corms of saffron were inoculated with these bacteria and the growth and development of the saffron plants were monitored for five months. Remarkably, inoculation of the bacteria had significant influence on vegetative growth, flowering time, and stigma yield of saffron crocus. Furthermore, one of the bacteria, C. metallidurans, is reported here for the first time as a naturally occurring plant-associated bacteria. Altogether our results suggest that plant microbiome is an important factor in phenotypic variation in saffron crocus.


Asunto(s)
Arabidopsis , Crocus , Microbiota , Crocus/genética , Crocus/microbiología , Bacterias/genética , Adaptación Fisiológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...