Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 236(Pt 2): 116801, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37558112

RESUMEN

A novel and first electrochemical biosensor based on Deoxyribonucleic acid (DNA) as a biological component to measure an antimigraine drug, rizatriptan benzoate (RZB) for patients under treatment in biological samples was developed. A carbon paste electrode (CPE) was modified by calf thymus (CT) double-stranded (ds)-DNA, nickel ferrite magnetic nanoparticles (NiFe2O4NPs), and gold nanoparticles (AuNPs). The morphology of the CT-DNA/NiFe2O4NPs/AuNPs/CPE was characterized by Field emission scanning electron microscope (FESEM). The presence of NiFe2O4NPs and AuNPs was confirmed by energy-dispersive X-ray spectroscopy (EDS) image of the NiFe2O4NPs/AuNPs/CPE surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to determine the structure and electrochemical characteristics of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. Differential pulse voltammetry (DPV) was used to investigate the electrochemical behavior of RZB. Chronoamperometry (CA) was applied to study the effect of CT-DNA immobilization time on the peak oxidation current of RZB accumulated on the surface of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. The results showed that, under optimum conditions, the prepared electrode responded linearly to RZB concentrations between 0.01 and 2.0 µM, with a 0.0033 µM detection limit (LOD) and 0.01 µM limit of quantification (LOQ). The parameters influencing the biosensor performance (temperature, CT-DNA immobilization time, and RZB/CT-DNA accumulation time) were optimized. DPV showed the displacement of the peak potential towards positive values and the reduction of its current, indicating that the drug could intercalate between the guanine base pairs of CT-DNA. Our biosensor was successfully applied for RZB measurement in human urine, blood serum, plasma samples, and tablets. The presented biosensor was fast response, sensitive, selective, cost-effective, and easy-to-use for RZB determination in pharmaceutical formulations and biological samples.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Carbono/química , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Límite de Detección , ADN , Preparaciones Farmacéuticas , Electrodos , Técnicas Biosensibles/métodos , Tomografía Computarizada por Rayos X
2.
Mikrochim Acta ; 187(6): 315, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32383071

RESUMEN

Nickel-ferrite nanoparticles (NiFe2O4) were synthesized by a hydrothermal method. They were used to modify a carbon paste electrode (CPE) and to prepare an electrochemical sensor for simultaneous determination of rizatriptan benzoate (RZB) and acetaminophen (AC). The structure and morphology of the bare CPE and modified CPE were studied using field emission scanning electron microscopy, while the structural characterization of NiFe2O4 was performed via X-ray diffraction. In the potential range 0.2-1.2 V, AC and RZB were detected at potentials of 0.5 V and 0.88 V (vs. Ag/AgCl saturated KCl 3 M), respectively. Both calibration plots are linear in the 1 to 90 µM concentration range. The limits of detection (at 3σ) of AC and RZB are 0.49 and 0.44 µM, respectively. The performance of the modified CPE was evaluated by quantifying the two drugs in spiked urine and in tablets. Graphical abstract The modified electrode consist of Nickel-ferrite and graphite by differential pulse voltammetry methods are schematically presented for simultaneous detection of acetaminophen (a painkiller drug) and rizatriptan benzoate (an antimigraine drug) in human urine and tablet samples.


Asunto(s)
Acetaminofén/orina , Técnicas Electroquímicas/métodos , Compuestos Férricos/química , Nanopartículas del Metal/química , Níquel/química , Triazoles/orina , Triptaminas/orina , Acetaminofén/química , Carbono/química , Técnicas Electroquímicas/instrumentación , Electrodos , Humanos , Límite de Detección , Oxidación-Reducción , Comprimidos/análisis , Triazoles/química , Triptaminas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...