Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(3): 635-647, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38227769

RESUMEN

Enzymatic degradation of cellulosic biomass is a well-established route for the sustainable production of biofuels, chemicals, and materials. A strategy employed by nature and industry to achieve an efficient degradation of cellulose is that cellobiohydrolases (or exocellulases), such as Cel7A, work synergistically with endoglucanases, such as Cel7B, to achieve the complete degradation of cellulose. However, a complete mechanistic understanding of this exo-endo synergy is still lacking. Here, we used single-molecule fluorescence microscopy to quantify the binding kinetics of Cel7A on cellulose when it is acting alone on the cellulose fibrils and in the presence of its synergy partner, the endoglucanase Cel7B. To this end, we used a fluorescently tagged Cel7A and studied its binding in the presence of the unlabeled Cel7B. This provided the single-molecule data necessary for the estimation of the rate constants of association kON and dissociation kOFF of Cel7A for the substrate. We show that the presence of Cel7B does not impact the dissociation rate constant, kOFF. But, the association rate of Cel7A decreases by a factor of 2 when Cel7B is present at a molar proportion of 10:1. This ratio has previously been shown to lead to synergy. This decrease in association rate is observed in a wide range of total enzyme concentrations, from sub nM to µM concentrations. This decrease in kON is consistent with the formation of cellulase clusters recently observed by others using atomic force microscopy.


Asunto(s)
Celulasa , Celulasas , Trichoderma , Hidrólisis , Celulosa/química , Celulasas/química , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo
2.
Biochem Biophys Rep ; 28: 101120, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34541340

RESUMEN

Cell migration is a fundamental characteristic of vital processes such as tissue morphogenesis, wound healing and immune cell homing to lymph nodes and inflamed or infected sites. Therefore, various brain defect diseases, chronic inflammatory diseases as well as tumor formation and metastasis are associated with aberrant or absent cell migration. We embedded multicellular brain cancer spheroids in Matrigel™ and utilized single-particle tracking to extract the paths of cells migrating away from the spheroids. We found that - in contrast to local invasion - single cell migration is independent of Matrigel™ concentration and is characterized by high directionality and persistence. Furthermore, we identified a subpopulation of super-spreading cells with >200-fold longer persistence times than the majority of cells. These results highlight yet another aspect of cell heterogeneity in tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA