Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0297358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324564

RESUMEN

Home cage aggression in group-housed male mice is a major welfare concern and may compromise animal research. Conventional cages prevent flight or retreat from sight, increasing the risk that agonistic encounters will result in injury. Moreover, depending on social rank, mice vary in their phenotype, and these effects seem highly variable and dependent on the social context. Interventions that reduce aggression, therefore, may reduce not only injuries and stress, but also variability between cage mates. Here we housed male mice (Balb/c and SWISS, group sizes of three and five) with or without partial cage dividers for two months. Mice were inspected for wounding weekly and home cages were recorded during housing and after 6h isolation housing, to assess aggression and assign individual social ranks. Fecal boli and fur were collected to quantify steroid levels. We found no evidence that the provision of cage dividers improves the welfare of group housed male mice; The prevalence of injuries and steroid levels was similar between the two housing conditions and aggression was reduced only in Balb/c strain. However, mice housed with cage dividers developed less despotic hierarchies and had more stable social ranks. We also found a relationship between hormone levels and social rank depending on housing type. Therefore, addition of cage dividers may play a role in stabilizing social ranks and modulating the activation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes, thus reducing phenotypic variability between mice of different ranks.


Asunto(s)
Agresión , Conducta Animal , Animales , Masculino , Ratones , Agresión/fisiología , Conducta Animal/fisiología , Vivienda para Animales , Esteroides , Hormonas
2.
Lab Anim (NY) ; 53(1): 18-22, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38151528

RESUMEN

Theoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories. For the standardized design, each laboratory ordered mice from a single breeding site (each laboratory from a different one), while for the HET design, each laboratory ordered proportionate numbers of mice from the five remaining breeding sites. To test our hypothesis, we assessed 14 outcome variables, including body weight, behavioral measures obtained from a single session on an elevated plus maze, and clinical blood parameters. Both breeding site and test laboratory affected variation in outcome variables, but the effect of test laboratory was more pronounced for most outcome variables. Moreover, heterogenization of study populations by breeding site (HET) did not reduce variation in outcome variables between test laboratories, which was most likely due to the fact that breeding site had only little effect on variation in outcome variables, thereby limiting the scope for HET to reduce between-lab variation. We conclude that heterogenization of study populations by breeding site has limited capacity for improving the replicability of results from single-laboratory animal studies.


Asunto(s)
Experimentación Animal , Conducta Animal , Animales , Ratones , Masculino , Ratones Endogámicos C57BL , Proyectos de Investigación
3.
Sci Rep ; 12(1): 20938, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463282

RESUMEN

Studies in mice have shown that less aversive handling methods (e.g. tunnel or cup handling) can reduce behavioural measures of anxiety in comparison to picking mice up by their tail. Despite such evidence, tail handling continues to be used routinely. Besides resistance to change accustomed procedures, this may also be due to the fact that current evidence in support of less aversive handling is mostly restricted to effects of extensive daily handling, which may not apply to routine husbandry practices. The aim of our study was to assess whether, and to what extent, different handling methods during routine husbandry induce differences in behavioural and physiological measures of stress in laboratory mice. To put the effects of handling method in perspective with chronic stress, we compared handling methods to a validated paradigm of unpredictable chronic mild stress (UCMS). We housed mice of two strains (Balb/c and C57BL/6) and both sexes either under standard laboratory conditions (CTRL) or under UCMS. Half of the animals from each housing condition were tail handled and half were tunnel handled twice per week, once during a cage change and once for a routine health check. We found strain dependent effects of handling method on behavioural measures of anxiety: tunnel handled Balb/c mice interacted with the handler more than tail handled conspecifics, and tunnel handled CTRL mice showed increased open arm exploration in the elevated plus-maze. Mice undergoing UCMS showed increased plasma corticosterone levels and reduced sucrose preference. However, we found no effect of handling method on these stress-associated measures. Our results therefore indicate that routine tail handling can affect behavioural measures of anxiety, but may not be a significant source of chronic husbandry stress. Our results also highlight strain dependent responses to handling methods.


Asunto(s)
Trastornos de Ansiedad , Enfermedad Injerto contra Huésped , Femenino , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Ansiedad , Prueba de Laberinto Elevado , Afecto , Ratones Endogámicos BALB C
5.
PLoS Biol ; 20(11): e3001886, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36417471

RESUMEN

The influence of protocol standardization between laboratories on their replicability of preclinical results has not been addressed in a systematic way. While standardization is considered good research practice as a means to control for undesired external noise (i.e., highly variable results), some reports suggest that standardized protocols may lead to idiosyncratic results, thus undermining replicability. Through the EQIPD consortium, a multi-lab collaboration between academic and industry partners, we aimed to elucidate parameters that impact the replicability of preclinical animal studies. To this end, 3 experimental protocols were implemented across 7 laboratories. The replicability of results was determined using the distance travelled in an open field after administration of pharmacological compounds known to modulate locomotor activity (MK-801, diazepam, and clozapine) in C57BL/6 mice as a worked example. The goal was to determine whether harmonization of study protocols across laboratories improves the replicability of the results and whether replicability can be further improved by systematic variation (heterogenization) of 2 environmental factors (time of testing and light intensity during testing) within laboratories. Protocols were tested in 3 consecutive stages and differed in the extent of harmonization across laboratories and standardization within laboratories: stage 1, minimally aligned across sites (local protocol); stage 2, fully aligned across sites (harmonized protocol) with and without systematic variation (standardized and heterogenized cohort); and stage 3, fully aligned across sites (standardized protocol) with a different compound. All protocols resulted in consistent treatment effects across laboratories, which were also replicated within laboratories across the different stages. Harmonization of protocols across laboratories reduced between-lab variability substantially compared to each lab using their local protocol. In contrast, the environmental factors chosen to introduce systematic variation within laboratories did not affect the behavioral outcome. Therefore, heterogenization did not reduce between-lab variability further compared to the harmonization of the standardized protocol. Altogether, these findings demonstrate that subtle variations between lab-specific study protocols may introduce variation across independent replicate studies even after protocol harmonization and that systematic heterogenization of environmental factors may not be sufficient to account for such between-lab variation. Differences in replicability of results within and between laboratories highlight the ubiquity of study-specific variation due to between-lab variability, the importance of transparent and fine-grained reporting of methodologies and research protocols, and the importance of independent study replication.


Asunto(s)
Reproducibilidad de los Resultados , Proyectos de Investigación , Animales , Ratones , Ratones Endogámicos C57BL
6.
PLoS Biol ; 20(10): e3001837, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36269766

RESUMEN

The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings.


Asunto(s)
Cromatina , Ambiente , Ratones , Animales , Ratones Endogámicos C57BL , Fenotipo , Genotipo
7.
PLoS Biol ; 20(5): e3001564, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511779

RESUMEN

The credibility of scientific research has been seriously questioned by the widely claimed "reproducibility crisis". In light of this crisis, there is a growing awareness that the rigorous standardisation of experimental conditions may contribute to poor reproducibility of animal studies. Instead, systematic heterogenisation has been proposed as a tool to enhance reproducibility, but a real-life test across multiple independent laboratories is still pending. The aim of this study was therefore to test whether heterogenisation of experimental conditions by using multiple experimenters improves the reproducibility of research findings compared to standardised conditions with only one experimenter. To this end, we replicated the same animal experiment in 3 independent laboratories, each employing both a heterogenised and a standardised design. Whereas in the standardised design, all animals were tested by a single experimenter; in the heterogenised design, 3 different experimenters were involved in testing the animals. In contrast to our expectation, the inclusion of multiple experimenters in the heterogenised design did not improve the reproducibility of the results across the 3 laboratories. Interestingly, however, a variance component analysis indicated that the variation introduced by the different experimenters was not as high as the variation introduced by the laboratories, probably explaining why this heterogenisation strategy did not bring the anticipated success. Even more interestingly, for the majority of outcome measures, the remaining residual variation was identified as an important source of variance accounting for 41% (CI95 [34%, 49%]) to 72% (CI95 [58%, 88%]) of the observed total variance. Despite some uncertainty surrounding the estimated numbers, these findings argue for systematically including biological variation rather than eliminating it in animal studies and call for future research on effective improvement strategies.


Asunto(s)
Experimentación Animal , Animales de Laboratorio , Animales , Laboratorios , Estándares de Referencia , Reproducibilidad de los Resultados
8.
Sci Rep ; 10(1): 11684, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669633

RESUMEN

Poor reproducibility is considered a serious problem in laboratory animal research, with important scientific, economic, and ethical implications. One possible source of conflicting findings in laboratory animal research are environmental differences between animal facilities combined with rigorous environmental standardization within studies. Due to phenotypic plasticity, study-specific differences in environmental conditions during development can induce differences in the animals' responsiveness to experimental treatments, thereby contributing to poor reproducibility of experimental results. Here, we studied how variation in weaning age (14-30 days) and housing conditions (single versus group housing) affects the phenotype of SWISS mice as measured by a range of behavioral and physiological outcome variables. Weaning age, housing conditions, and their interaction had little effect on the development of stereotypies, as well as on body weight, glucocorticoid metabolite concentrations, and behavior in the elevated plus-maze and open field test. These results are surprising and partly in conflict with previously published findings, especially with respect to the effects of early weaning. Our results thus question the external validity of previous findings and call for further research to identify the sources of variation between replicate studies and study designs that produce robust and reproducible experimental results.


Asunto(s)
Experimentación Animal/normas , Animales de Laboratorio/fisiología , Variación Biológica Individual , Vivienda para Animales/normas , Factores de Edad , Animales , Animales Recién Nacidos , Peso Corporal , Femenino , Glucocorticoides/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Fenotipo , Reproducibilidad de los Resultados , Destete
9.
Sci Rep ; 8(1): 713, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335423

RESUMEN

We studied how space allowance affects measures of animal welfare in mice by systematically varying group size and cage type across three levels each in both males and females of two strains of mice (C57BL/6ByJ and BALB/cByJ; n = 216 cages, a total of 1152 mice). This allowed us to disentangle the effects of total floor area, group size, stocking density, and individual space allocation on a broad range of measures of welfare, including growth (food and water intake, body mass); stress physiology (glucocorticoid metabolites in faecal boli); emotionality (open field behaviour); brain function (recurrent perseveration in a two-choice guessing task); and home-cage behaviour (activity, stereotypic behaviour). While increasing group size was associated with a decrease in food and water intake in general, and more specifically with increased attrition due to escalated aggression in male BALB mice, no other consistent effects of any aspect of space allowance were found with respect to the measures studied here. Our results indicate that within the range of conditions commonly found in laboratory mouse housing, space allowance as such has little impact on measures of welfare, except for group size which may be a risk factor for escalating aggression in males of some strains.


Asunto(s)
Conducta Animal , Vivienda para Animales , Densidad de Población , Agresión , Bienestar del Animal , Animales , Femenino , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
10.
PLoS One ; 11(5): e0153203, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27145080

RESUMEN

Stereotypies are abnormal repetitive behaviour patterns that are highly prevalent in laboratory mice and are thought to reflect impaired welfare. Thus, they are associated with impaired behavioural inhibition and may also reflect negative affective states. However, in mice the relationship between stereotypies and behavioural inhibition is inconclusive, and reliable measures of affective valence are lacking. Here we used an exploration based task to assess cognitive bias as a measure of affective valence and a two-choice guessing task to assess recurrent perseveration as a measure of impaired behavioural inhibition to test mice with different forms and expression levels of stereotypic behaviour. We trained 44 CD-1 and 40 C57BL/6 female mice to discriminate between positively and negatively cued arms in a radial maze and tested their responses to previously inaccessible ambiguous arms. In CD-1 mice (i) mice with higher stereotypy levels displayed a negative cognitive bias and this was influenced by the form of stereotypy performed, (ii) negative cognitive bias was evident in back-flipping mice, and (iii) no such effect was found in mice displaying bar-mouthing or cage-top twirling. In C57BL/6 mice neither route-tracing nor bar-mouthing was associated with cognitive bias, indicating that in this strain these stereotypies may not reflect negative affective states. Conversely, while we found no relation of stereotypy to recurrent perseveration in CD-1 mice, C57BL/6 mice with higher levels of route-tracing, but not bar-mouthing, made more repetitive responses in the guessing task. Our findings confirm previous research indicating that the implications of stereotypies for animal welfare may strongly depend on the species and strain of animal as well as on the form and expression level of the stereotypy. Furthermore, they indicate that variation in stereotypic behaviour may represent an important source of variation in many animal experiments.


Asunto(s)
Conducta Animal , Conducta Estereotipada , Animales , Femenino , Ratones , Ratones Endogámicos , Especificidad de la Especie
11.
PLoS One ; 10(7): e0130718, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26154309

RESUMEN

Behavioural tests to assess affective states are widely used in human research and have recently been extended to animals. These tests assume that affective state influences cognitive processing, and that animals in a negative affective state interpret ambiguous information as expecting a negative outcome (displaying a negative cognitive bias). Most of these tests however, require long discrimination training. The aim of the study was to validate an exploration based cognitive bias test, using two different handling methods, as previous studies have shown that standard tail handling of mice increases physiological and behavioural measures of anxiety compared to cupped handling. Therefore, we hypothesised that tail handled mice would display a negative cognitive bias. We handled 28 female CD-1 mice for 16 weeks using either tail handling or cupped handling. The mice were then trained in an eight arm radial maze, where two adjacent arms predicted a positive outcome (darkness and food), while the two opposite arms predicted a negative outcome (no food, white noise and light). After six days of training, the mice were also given access to the four previously unavailable intermediate ambiguous arms of the radial maze and tested for cognitive bias. We were unable to validate this test, as mice from both handling groups displayed a similar pattern of exploration. Furthermore, we examined whether maze exploration is affected by the expression of stereotypic behaviour in the home cage. Mice with higher levels of stereotypic behaviour spent more time in positive arms and avoided ambiguous arms, displaying a negative cognitive bias. While this test needs further validation, our results indicate that it may allow the assessment of affective state in mice with minimal training-a major confound in current cognitive bias paradigms.


Asunto(s)
Animales de Laboratorio/psicología , Cognición , Aprendizaje , Conducta Estereotipada , Crianza de Animales Domésticos , Animales , Ansiedad , Conducta Animal/fisiología , Oscuridad , Conducta Exploratoria/fisiología , Femenino , Manejo Psicológico , Humanos , Aprendizaje por Laberinto/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...