Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(7): 4591-4606, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38318620

RESUMEN

This research explores the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) derived from acetone (AgNPs-acetone) and aqueous (AgNPs-H2O) extracts of Agrimonia eupatoria. The nanoparticles exhibit isometric morphology and uniform size distribution, as elucidated through Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM) analyses. The utilization of Scanning Transmission Microscopy (STEM) with High-Angle Annular Dark-Field (HAADF) imaging and energy dispersive spectrometry (EDS) confirms the crystalline nature of AgNPs. Fourier Transform Infrared (FTIR) analysis reveals identical functional groups in the plant extracts and their corresponding AgNPs, suggesting the involvement of phytochemicals in the reduction of silver ions. Spectrophotometric monitoring of the synthesis process, influenced by various parameters, provides insights into the kinetics and optimal conditions for AgNP formation. The antioxidant activities of the plant extracts and synthesized AgNPs are evaluated through DPPH and ABTS methods, highlighting AgNPs-acetone as a potent antioxidant. Third-instar larvae exposed to the extracts have differential effects on DNA damage, with the acetone extract demonstrating antigenotoxic properties. Similarly, biosynthesized AgNPs-acetone displays antigenotoxic effects against EMS-induced DNA damage. The genotoxic effect of water extract and AgNPs-acetone was dose-dependent. Hemolytic potential is assessed on rat erythrocytes, revealing that low concentrations of AgNPs-acetone and AgNPs-H2O had a nontoxic effect on erythrocytes. Cytotoxicity assays demonstrate time-dependent and dose-dependent effects, with AgNPs-acetone exhibiting superior cytotoxicity. Proapoptotic activity is confirmed through apoptosis induction, emphasizing the potential therapeutic applications of AgNPs. The antimicrobial activity of AgNPs reveals concentration-dependent effects. AgNPs-H2O display better antibacterial activity, while antifungal activities are comparable between the two nanoparticle types.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123828, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181626

RESUMEN

Indocyanine green (ICG) is the FDA-approved fluorescent dye used for in vivo medical imaging, diagnostics, and photothermal therapy. However, this dye is easily degradable in the human vascular system, and therefore its stabilization is preferable. In this work, ICG molecules were stabilized by their adsorption on the surface of the L-methionine-capped Ag and Au nanoparticles (Ag and Au @LM NPs) in aqueous colloidal dispersions. The result is the formation of hybrid metal core/ICG shell NPs in colloidal dispersions. Additionally, colloidal dispersions were stabilized, indicating a double effect of ICG adsorption. The obtained hybrid NPs were studied experimentally (UV-Vis spectrophotometry, HRTEM, DLS, FTIR) and theoretically (DFT calculations). HRTEM revealed that the interplanar spacing between adjacent planes of NPs decreases after the dye adsorption. The results obtained from the DFT study confirmed the formation of a covalent bond between the oxygen from ICG dye SO3- group and metal NPs. Considering the characteristics of both components of the NPs/ICG hybrid system, the authors assume that this hybrid system can exhibit the synergistic effect that could lead to more successful theranostic treatment of cancer in nanomedicine.

3.
Nanomaterials (Basel) ; 10(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339399

RESUMEN

Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs.

4.
Phys Chem Chem Phys ; 22(38): 22078-22095, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32985642

RESUMEN

Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1-xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm-2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec-1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (0001[combining macron]) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm-2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.

5.
Nanomaterials (Basel) ; 10(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823509

RESUMEN

Nowadays, great focus is given to the contamination of surface and groundwater because of the extensive usage of pesticides in agriculture. The improvements of commercial catalyst TiO2 activity using different Au nanoparticles were investigated for mesotrione photocatalytic degradation under simulated sunlight. The selected system was 2.43 × 10-3% Au-S-CH2-CH2-OH/TiO2 (0.5 g/L) that was studied by transmission electron microscopy and ultraviolet-visible (UV-Vis) spectroscopy. It was found that TiO2 particles size was ~20 nm and ~50 nm, respectively. The Au nanoparticles were below 10 nm and were well distributed within the framework of TiO2. For 2.43 × 10-3% Au-S-CH2-CH2-OH/TiO2 (0.5 g/L), band gap energy was 2.45 eV. In comparison to the pure TiO2, addition of Au nanoparticles generally enhanced photocatalytic removal of mesotrione. By examining the degree of mineralization, it was found that 2.43 × 10-3% Au-S-CH2-CH2-OH/TiO2 (0.5 g/L) system was the most efficient for the removal of the mesotrione and intermediates. The effect of tert-butanol, NaF and ethylenediaminetetraacetic acid disodium salt on the transformation rate suggested that the relative contribution of various reactive species changed in following order: h+ > ●OHads > ●OHbulk. Finally, several intermediates that were formed during the photocatalytic treatment of mesotrione were identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA