Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Perinatol ; 43(6): 728-734, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36261619

RESUMEN

This study aimed to compare preterm (PT) and full-term (FT) infants' adaptive behavior and functional cortical response to tactile stimulus, as measured by Test of Sensory Functions in Infants and functional Near-Infrared Spectroscopy (fNIRS). Outcome measures were taken at 6 (PT = 26/FT = 21 infants) and 12 months (PT = 15/FT = 14 infants). At 6 months, poorer tactile reactivity was observed in PT, but not confirmed at 12 months. At 6 months, cortical response to tactile stimulus was found in the primary sensorimotor cortex and differences between groups did not reach significance. At 12 months, cortical response was found in the primary sensorimotor cortex and premotor area and in the somatosensory associative area, with significant less frequent response in premotor area in PT. The findings reinforce fNIRS as a tool to complement the knowledge of tactile adaptive behaviors in PT in early life.


Asunto(s)
Recien Nacido Prematuro , Tacto , Recién Nacido , Humanos , Lactante , Proyectos Piloto , Recien Nacido Prematuro/fisiología , Espectroscopía Infrarroja Corta
2.
Sci Rep ; 11(1): 10135, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980948

RESUMEN

Congenital toxoplasmosis (CT) is a known cause of hearing loss directly caused by Toxoplasma gondii. Hearing loss might result from sensory, neural, or sensorineural lesions. Early treated infants rarely develop hearing loss, but retinochoroidal lesions, intracranial calcifications and hydrocephalus are common. In this study, we aimed to evaluate the brain evoked hemodynamic responses of CT and healthy infants during four auditory stimuli: mother infant directed speech, researcher infant directed speech, mother reading and researcher recorded. Children underwent Transitionally Evoked Otoacoustic Emission Auditory Testing and Automated Brainstem Auditory Response tests with normal auditory results, but with a tendency for greater latencies in the CT group compared to the control group. We assessed brain hemodynamics with functional near-infrared spectroscopy (fNIRS) measurements from 61 infants, and we present fNIRS results as frequency maps of activation and deactivation for each stimulus. By evaluating infants in the three first months of life, we observed an individual heterogeneous brain activation pattern in response to all auditory stimuli for both groups. Each channel was activated or deactivated in less than 30% of children for all stimuli. There is a need of prospective studies to evaluate if the neurologic or auditory changes course with compromise of children outcomes.


Asunto(s)
Encéfalo/fisiopatología , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/etiología , Espectroscopía Infrarroja Corta/métodos , Toxoplasmosis Congénita/complicaciones , Estudios de Casos y Controles , Femenino , Pruebas Auditivas , Humanos , Lactante , Recién Nacido , Masculino
3.
Comput Methods Programs Biomed ; 200: 105844, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33267972

RESUMEN

BACKGROUND AND OBJECTIVE: Functional near-infrared spectroscopy (fNIRS) has become an attractive choice to neuroscience because of its high temporal resolution, ease of use, non-invasiveness, and affordability. With the advent of wearable fNIRS technology, on-the-spot studies of brain function have become viable. However, the lack of within-subject reproducibility is one of the barriers to the full acceptability of fNIRS. To support the validation of the claim that within-subject reproducibility of fNIRS could benefit from accurate anatomical information, we present in this paper a method to develop an image-based system that improves the placement of the sensors on the scalp at interactive rates. METHODS: The proposed solution consists of an electromagnetic digitizer and an interactive visualization system that allows monitoring the movements of the digitizer on a real head with respect to the underlying cerebral cortical structures. GPU-based volume raycasting rendering is applied to unveil these structures from the corresponding magnetic resonance imaging volume. Scalp and cortical surface are estimated from the scanned volume to improve depth perception. An alignment algorithm between the real and scanned heads is devised to visually feedback the position of the stylus of the digitizer. Off-screen rendering of the depthmaps of the visible surfaces makes spatial positioning of a 2D interaction pointer possible. RESULTS: We evaluated the alignment accuracy using four to eight anatomical landmarks and found seven to be a good compromise between precision and efficiency. Next, we evaluated reproducibility in positioning five arbitrarily chosen points on three volunteers by four operators over five sessions. In every session, seven anatomical landmarks were applied in the alignment of the real and the scanned head. For the same volunteer, one-way analysis of variance (ANOVA) revealed no significant differences within the five points digitized by the same operator over five sessions (α = 0.05). In addition, preliminary study of motor cortex activation by right-hand finger tapping showed the potential of our approach to increase functional fNIRS reproducibility. CONCLUSIONS: Results of experiments suggest that the enhancement of the visualization of the location of the probes on the scalp, relative to the underlying cortical structures, improves reproducibility of fNIRS measurements. As further work, we plan to study the fNIRS reproducibility in other cortical regions and in clinical settings using the proposed system.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía Infrarroja Corta , Algoritmos , Mano , Humanos , Reproducibilidad de los Resultados
4.
Front Neurosci ; 14: 746, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848543

RESUMEN

As functional near-infrared spectroscopy (fNIRS) is developed as a neuroimaging technique and becomes an option to study a variety of populations and tasks, the reproducibility of the fNIRS signal is still subject of debate. By performing test-retest protocols over different functional tasks, several studies agree that the fNIRS signal is reproducible over group analysis, but the inter-subject and within-subject reproducibility is poor. The high variability at the first statistical level is often attributed to global systemic physiology. In the present work, we revisited the reproducibility of the fNIRS signal during a finger-tapping task across multiple sessions on the same and different days. We expanded on previous studies by hypothesizing that the lack of spatial information of the optodes contributes to the low reproducibility in fNIRS, and we incorporated a real-time neuronavigation protocol to provide accurate cortical localization of the optodes. Our proposed approach was validated in 10 healthy volunteers, and our results suggest that the addition of neuronavigation can increase the within-subject reproducibility of the fNIRS data, particularly in the region of interest. Unlike traditional approaches to positioning the optodes, in which low intra-subject reproducibility has been found, we were able to obtain consistent and robust activation of the contralateral primary motor cortex at the intra-subject level using a neuronavigation protocol. Overall, our findings support the hypothesis that at least part of the variability in fNIRS cannot be only attributed to global systemic physiology. The use of neuronavigation to guide probe positioning, as proposed in this work, has impacts to longitudinal protocols performed with fNIRS.

5.
Early Hum Dev ; 133: 23-28, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31048133

RESUMEN

BACKGROUND: Motor impairments are frequently associated with preterm birth and interfere in acquisition of essential skills to global development. Using Near Infrared Spectroscopy (NIRS), the study of neural correlates of motor development in early stages of life are feasible in an ecological assessment. AIMS: To evaluate changes in cortical activity in response to a sensorimotor stimulation in preterm and full-term infants at 6 and 12 months of age. STUDY DESIGN: A longitudinal study was conducted with 22 infants (12 preterm and 10 full-term). Hemodynamic activity during sensorimotor task (8 blocks of 8 s of vibration applied to infant's right hand) was measured by Functional Near Infrared Spectroscopy (fNIRS). The optical probe consisted of 84 channels positioned according to the international 10-20 system coordinates, covering the frontal (38 channels), parietal (16 channels), temporal (22 channels) and occipital (8 channels) lobes of both hemispheres. RESULTS: Preterm and full-term infants exhibited differences of location of the activation as well on the hemodynamic response in both the evaluated age groups. CONCLUSIONS: Group differences in activation of sensorimotor cortex observed in this study demonstrate the potential of fNIRS application for preterm evaluation of motor development in children. Overall, the present work contributes to our understanding of cortical activation of cerebral motor skills spanning early ages in preterm-born children.


Asunto(s)
Recien Nacido Prematuro/crecimiento & desarrollo , Corteza Sensoriomotora/fisiología , Femenino , Hemodinámica , Humanos , Lactante , Recién Nacido , Masculino , Destreza Motora , Corteza Sensoriomotora/diagnóstico por imagen , Corteza Sensoriomotora/crecimiento & desarrollo , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...