Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673742

RESUMEN

Artificial neural networks (ANNs) are nowadays applied as the most efficient methods in the majority of machine learning approaches, including data-driven modeling for assessment of the toxicity of chemicals. We developed a combined neural network methodology that can be used in the scope of new approach methodologies (NAMs) assessing chemical or drug toxicity. Here, we present QSAR models for predicting the physical and biochemical properties of molecules of three different datasets: aqueous solubility, acute fish toxicity toward fat head minnow, and bio-concentration factors. A novel neural network modeling method is developed by combining two neural network algorithms, namely, the counter-propagation modeling strategy (CP-ANN) with the back-propagation-of-errors algorithm (BPE-ANN). The advantage is a short training time, robustness, and good interpretability through the initial CP-ANN part, while the extension with BPE-ANN improves the precision of predictions in the range between minimal and maximal property values of the training data, regardless of the number of neurons in both neural networks, either CP-ANN or BPE-ANN.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Animales , Relación Estructura-Actividad Cuantitativa , Aprendizaje Automático
2.
Toxicology ; 502: 153732, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38272384

RESUMEN

P-glycoprotein (Pgp) is a member of the ATP-binding cassette family of transporters that confers multidrug resistance to cancer cells and is actively involved in the pharmacokinetics and toxicokinetics of a big variety of drugs. Extensive studies have provided insights into the binding of many compounds, but the precise mechanism of translocation across the membrane remains unknown; in this context, the major challenge has been to understand the basis for its polyspecificity. In this study, molecular dynamics (MD) simulations of human P-gp (hP-gp) in an explicit membrane-and-water environment were performed to investigate the dynamic behavior of the transporter in the presence of different compounds (active and inactive) in the binding pocket and ATP molecules within the nucleotide binding domains (NBDs). The complexes studied involve four compounds: cyclosporin A (CSA), amiodarone (AMI), pamidronate (APD), and valproic acid (VPA). While CSA and AMI are known to interact with P-gp, APD and VPA do not. The results highlighted how the presence of ATP notably contributed to increased flexibility of key residues in NBD1 of active systems, indicating potential conformational changes activating the translocation mechanism. MD simulations reveal how these domains adapt and respond to the presence of different substrates, as well as the influence of ATP binding on their flexibility. Furthermore, distinctive behavior was observed in the presence of active and inactive compounds, particularly in the arrangement of ATP between NBDs, supporting the proposed nucleotide sandwich dimer mechanism for ATP binding. This study provides comprehensive insights into P-gp behavior with various ligands and ATP, offering implications for drug development, toxicity assessment and demonstrating the validity of the results derived from the MD simulations.


Asunto(s)
Proteínas de Transporte de Membrana , Simulación de Dinámica Molecular , Humanos , Adenosina Trifosfato/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Nucleótidos/metabolismo , Unión Proteica
3.
Curr Top Med Chem ; 23(29): 2792-2804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867278

RESUMEN

Quantitative structure - activity relationship (QSAR) modelling is widely used in medicinal chemistry and regulatory decision making. The large amounts of data collected in recent years in materials and life sciences projects provide a solid foundation for data-driven modelling approaches that have fostered the development of machine learning and artificial intelligence tools. An overview and discussion of the principles of QSAR modelling focus on the assembly and curation of data, computation of molecular descriptor, optimization, validation, and definition of the scope of the developed QSAR models. In this review, some examples of (QSAR) models based on artificial neural networks are given to demonstrate the effectiveness of nonlinear methods for extracting information from large data sets to classify new chemicals and predict their biological properties.


Asunto(s)
Inteligencia Artificial , Relación Estructura-Actividad Cuantitativa , Redes Neurales de la Computación , Aprendizaje Automático , Descubrimiento de Drogas
4.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762462

RESUMEN

Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K, 1GOS, 1GS4, 1H82, 1OG5, 1UOM, 2F9Q, 2J0D, 3ERT) obtained from the Protein Data Bank (PDB) and showing high similarity to proteins from aquatic species. Then, the binding activity of 169 FDs to the enzyme acetylcholinesterase (AChE)-as a known target of toxins in fathead minnows and Daphnia magna, causing the inhibition of AChE-was analyzed. Finally, the structural aquatic toxicity alerts obtained from ToxAlert were used to confirm the possible mechanism of action. Machine learning and cheminformatics tools were used to analyze the data. Counter-propagation artificial neural network (CPANN) models were used to determine key binding properties of FDs to proteins associated with aquatic toxicity. Predicting the binding affinity of unknown FDs using quantitative structure-activity relationship (QSAR) models eliminates the need for complex and time-consuming calculations. The results of the study show which structural features of FDs have the greatest impact on aquatic organisms and help prioritize FDs and make manufacturing decisions.

5.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499131

RESUMEN

ABC transporters play a critical role in both drug bioavailability and toxicity, and with the discovery of the P-glycoprotein (P-gp), this became even more evident, as it plays an important role in preventing intracellular accumulation of toxic compounds. Over the past 30 years, intensive studies have been conducted to find new therapeutic molecules to reverse the phenomenon of multidrug resistance (MDR) ), that research has found is often associated with overexpression of P-gp, the most extensively studied drug efflux transporter; in MDR, therapeutic drugs are prevented from reaching their targets due to active efflux from the cell. The development of P-gp inhibitors is recognized as a good way to reverse this type of MDR, which has been the subject of extensive studies over the past few decades. Despite the progress made, no effective P-gp inhibitors to reverse multidrug resistance are yet on the market, mainly because of their toxic effects. Computational studies can accelerate this process, and in silico models such as QSAR models that predict the activity of compounds associated with P-gp (or analogous transporters) are of great value in the early stages of drug development, along with molecular modelling methods, which provide a way to explain how these molecules interact with the ABC transporter. This review highlights recent advances in computational P-gp research, spanning the last five years to 2022. Particular attention is given to the use of machine-learning approaches, drug-transporter interactions, and recent discoveries of potential P-gp inhibitors that could act as modulators of multidrug resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología
6.
Comput Struct Biotechnol J ; 20: 913-924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242284

RESUMEN

Fullerene derivatives (FDs) belong to a relatively new family of nano-sized organic compounds. They are widely applied in materials science, pharmaceutical industry, and (bio) medicine. This research focused on the study of FDs in terms of their potential inhibitory effect on therapeutic targets associated with diabetic disease, as well as analysis of protein-ligand binding in order to identify the key binding characteristics of FDs. Therapeutic drug compounds when entering the biological system usually inevitably encounter and interact with a vast variety of biomolecules that are responsible for many different functions in organisms. Protein biomolecules are the most important functional components and used in this study as target structures. The structures of proteins [(PDB ID: 1BMQ, 1FM6, 1GPB, 1H5U, 1US0)] belonging to the class of anti-diabetes targets were obtained from the Protein Data Bank (PDB). Protein binding activity data (binding scores) were calculated for the dataset of 169 FDs related to these five proteins. Subsequently, the resulting data were analyzed using various machine learning and cheminformatics methods, including artificial neural network algorithms for variable selection and property prediction. The Quantitative Structure-Activity Relationship (QSAR) models for prediction of binding scores activity were built up according to five Organization for Economic Co-operation and Development (OECD) principles. All the data obtained can provide important information for further potential use of FDs with different functional groups as promising medical antidiabetic agents. Binding scores activity can be used for ranking of FDs in terms of their inhibitory activity (pharmacological properties) and potential toxicity.

7.
Comput Toxicol ; 21: 100206, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35211661

RESUMEN

In a century where toxicology and chemical risk assessment are embracing alternative methods to animal testing, there is an opportunity to understand the causal factors of neurodevelopmental disorders such as learning and memory disabilities in children, as a foundation to predict adverse effects. New testing paradigms, along with the advances in probabilistic modelling, can help with the formulation of mechanistically-driven hypotheses on how exposure to environmental chemicals could potentially lead to developmental neurotoxicity (DNT). This investigation aimed to develop a Bayesian hierarchical model of a simplified AOP network for DNT. The model predicted the probability that a compound induces each of three selected common key events (CKEs) of the simplified AOP network and the adverse outcome (AO) of DNT, taking into account correlations and causal relations informed by the key event relationships (KERs). A dataset of 88 compounds representing pharmaceuticals, industrial chemicals and pesticides was compiled including physicochemical properties as well as in silico and in vitro information. The Bayesian model was able to predict DNT potential with an accuracy of 76%, classifying the compounds into low, medium or high probability classes. The modelling workflow achieved three further goals: it dealt with missing values; accommodated unbalanced and correlated data; and followed the structure of a directed acyclic graph (DAG) to simulate the simplified AOP network. Overall, the model demonstrated the utility of Bayesian hierarchical modelling for the development of quantitative AOP (qAOP) models and for informing the use of new approach methodologies (NAMs) in chemical risk assessment.

8.
Toxicol In Vitro ; 81: 105332, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35176449

RESUMEN

Human aromatase, also called CYP19A1, plays a major role in the conversion of androgens into estrogens. Inhibition of aromatase is an important target for estrogen receptor (ER)-responsive breast cancer therapy. Use of azole compounds as aromatase inhibitors is widespread despite their low selectivity. A toxicological evaluation of commonly used azole-based drugs and agrochemicals with respect to CYP19A1 is currently requested by the European Union- Registration, Evaluation, Authorization and Restriction of Chemicals (EU-REACH) regulations due to their potential as endocrine disruptors. In this connection, identification of structural alerts (SAs) is an effective strategy for the toxicological assessment and safe drug design. The present study describes the identification of SAs of azole-based chemicals as guiding experts to predict the aromatase activity. Total 21 SAs associated with aromatase activity were extracted from dataset of 326 azole-based drugs/chemicals obtained from Tox21 library. A cross-validated classification model having high accuracy (error rate 5%) was proposed which can precisely classify azole chemicals into active/inactive toward aromatase. In addition, mechanistic details and toxicological properties (agonism/antagonism) of azoles with respect to aromatase were explored by comparing active and inactive chemicals using structure-activity relationships (SAR). Lastly, few structural alerts were applied to form chemical categories for read-across applications.


Asunto(s)
Aromatasa , Azoles , Aromatasa/metabolismo , Inhibidores de la Aromatasa/química , Inhibidores de la Aromatasa/toxicidad , Azoles/toxicidad , Citocromo P-450 CYP1A1 , Humanos , Receptores de Estrógenos , Relación Estructura-Actividad
9.
Front Mol Neurosci ; 14: 619496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642992

RESUMEN

Besides amyloid fibrils, amyloid pores (APs) represent another mechanism of amyloid induced toxicity. Since hypothesis put forward by Arispe and collegues in 1993 that amyloid-beta makes ion-conducting channels and that Alzheimer's disease may be due to the toxic effect of these channels, many studies have confirmed that APs are formed by prefibrillar oligomers of amyloidogenic proteins and are a common source of cytotoxicity. The mechanism of pore formation is still not well-understood and the structure and imaging of APs in living cells remains an open issue. To get closer to understand AP formation we used predictive methods to assess the propensity of a set of 30 amyloid-forming proteins (AFPs) to form transmembrane channels. A range of amino-acid sequence tools were applied to predict AP domains of AFPs, and provided context on future experiments that are needed in order to contribute toward a deeper understanding of amyloid toxicity. In a set of 30 AFPs we predicted their amyloidogenic propensity, presence of transmembrane (TM) regions, and cholesterol (CBM) and ganglioside binding motifs (GBM), to which the oligomers likely bind. Noteworthy, all pathological AFPs share the presence of TM, CBM, and GBM regions, whereas the functional amyloids seem to show just one of these regions. For comparative purposes, we also analyzed a few examples of amyloid proteins that behave as biologically non-relevant AFPs. Based on the known experimental data on the ß-amyloid and α-synuclein pore formation, we suggest that many AFPs have the potential for pore formation. Oligomerization and α-TM helix to ß-TM strands transition on lipid rafts seem to be the common key events.

10.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008783

RESUMEN

P-Glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette superfamily of transporters, and it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping compounds out of cells. P-gp contributes to a reduction in toxicity, and has broad substrate specificity. It is involved in the failure of many cancer and antiviral chemotherapies due to the phenomenon of multidrug resistance (MDR), in which the membrane transporter removes chemotherapeutic drugs from target cells. Understanding the details of the ligand-P-gp interaction is therefore critical for the development of drugs that can overcome the MDR phenomenon, for the early identification of P-gp substrates that will help us to obtain a more effective prediction of toxicity, and for the subsequent outdesign of substrate properties if needed. In this work, a series of molecular dynamics (MD) simulations of human P-gp (hP-gp) in an explicit membrane-and-water environment were performed to investigate the effects of binding different compounds on the conformational dynamics of P-gp. The results revealed significant differences in the behaviour of P-gp in the presence of active and non-active compounds within the binding pocket, as different patterns of movement were identified that could be correlated with conformational changes leading to the activation of the translocation mechanism. The predicted ligand-P-gp interactions are in good agreement with the available experimental data, as well as the estimation of the binding-free energies of the studied complexes, demonstrating the validity of the results derived from the MD simulations.


Asunto(s)
Simulación de Dinámica Molecular , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Humanos , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Análisis de Componente Principal , Estructura Secundaria de Proteína , Solventes/química , Relación Estructura-Actividad , Termodinámica
11.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517082

RESUMEN

The ABCB1 transporter also known as P-glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette super-family of transporters; it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping the compounds out of cells. P-gp contributes to a decrease of toxicity and possesses broad substrate specificity. It is involved in the failure of numerous anticancer and antiviral chemotherapies due to the multidrug resistance (MDR) phenomenon, where it removes the chemotherapeutics out of the targeted cells. Understanding the details of the ligand-P-gp interaction is therefore crucial for the development of drugs that might overcome the MRD phenomenon and for obtaining a more effective prediction of the toxicity of certain compounds. In this work, an in silico modeling was performed using homology modeling and molecular docking methods with the aim of better understanding the ligand-P-gp interactions. Based on different mouse P-gp structural templates from the PDB repository, a 3D model of the human P-gp (hP-gp) was constructed by means of protein homology modeling. The homology model was then used to perform molecular docking calculations on a set of thirteen compounds, including some well-known compounds that interact with P-gp as substrates, inhibitors, or both. The sum of ranking differences (SRD) was employed for the comparison of the different scoring functions used in the docking calculations. A consensus-ranking scheme was employed for the selection of the top-ranked pose for each docked ligand. The docking results showed that a high number of π interactions, mainly π-sigma, π-alkyl, and π-π type of interactions, together with the simultaneous presence of hydrogen bond interactions contribute to the stability of the ligand-protein complex in the binding site. It was also observed that some interacting residues in hP-gp are the same when compared to those observed in a co-crystallized ligand (PBDE-100) with mouse P-gp (PDB ID: 4XWK). Our in silico approach is consistent with available experimental results regarding P-gp efflux transport assay; therefore it could be useful in the prediction of the role of new compounds in systemic toxicity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Descubrimiento de Drogas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Teoría Funcional de la Densidad , Descubrimiento de Drogas/métodos , Enlace de Hidrógeno , Unión Proteica , Conformación Proteica , Reproducibilidad de los Resultados , Relación Estructura-Actividad
12.
Nanomaterials (Basel) ; 10(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906497

RESUMEN

Nanostructures like fullerene derivatives (FDs) belong to a new family of nano-sized organic compounds. Fullerenes have found a widespread application in material science, pharmaceutical, biomedical, and medical fields. This fact caused the importance of the study of pharmacological as well as toxicological properties of this relatively new family of chemicals. In this work, a large set of 169 FDs and their binding activity to 1117 proteins was investigated. The structure-based descriptors widely used in drug design (so-called drug-like descriptors) were applied to understand cheminformatics characteristics related to the binding activity of fullerene nanostructures. Investigation of applied descriptors demonstrated that polarizability, topological diameter, and rotatable bonds play the most significant role in the binding activity of FDs. Various cheminformatics methods, including the counter propagation artificial neural network (CPANN) and Kohonen network as visualization tool, were applied. The results of this study can be applied to compose the priority list for testing in risk assessment related to the toxicological properties of FDs. The pharmacologist can filter the data from the heat map to view all possible side effects for selected FDs.

13.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31454948

RESUMEN

The transmembrane (TM) proteins are gateways for molecular transport across the cell membrane that are often selected as potential targets for drug design. The bilitranslocase (BTL) protein facilitates the uptake of various anions, such as bilirubin, from the blood into the liver cells. As previously established, there are four hydrophobic transmembrane segments (TM1-TM4), which constitute the structure of the transmembrane channel of the BTL protein. In our previous studies, the 3D high-resolution structure of the TM2 and TM3 transmembrane fragments of the BTL in sodium dodecyl sulfate (SDS) micellar media were solved using Nuclear Magnetic Resonance (NMR) spectroscopy and molecular dynamics simulations (MD). The high-resolution 3D structure of the fourth transmembrane region (TM4) of the BTL was evaluated using NMR spectroscopy in two different micellar media, anionic SDS and zwitterionic DPC (dodecylphosphocholine). The presented experimental data revealed the existence of an α -helical conformation in the central part of the TM4 in both micellar media. In the case of SDS surfactant, the α -helical conformation is observed for the Pro258-Asn269 region. The use of the zwitterionic DPC micelle leads to the formation of an amphipathic α -helix, which is characterized by the extension of the central α -helix in the TM4 fragment to Phe257-Thr271. The complex character of the dynamic processes in the TM4 peptide within both surfactants was analyzed based on the relaxation data acquired on 15 N and 31 P isotopes. Contrary to previously published and present observations in the SDS micelle, the zwitterionic DPC environment leads to intensive low-frequency molecular dynamic processes in the TM4 fragment.


Asunto(s)
Ceruloplasmina/química , Proteínas de la Membrana/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ceruloplasmina/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/metabolismo , Micelas , Péptidos/química , Péptidos/metabolismo , Relación Estructura-Actividad
14.
Molecules ; 24(10)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130601

RESUMEN

P-glycoprotein (P-gp) is a transmembrane protein that actively transports a wide variety of chemically diverse compounds out of the cell. It is highly associated with the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties of drugs/drug candidates and contributes to decreasing toxicity by eliminating compounds from cells, thereby preventing intracellular accumulation. Therefore, in the drug discovery and toxicological assessment process it is advisable to pay attention to whether a compound under development could be transported by P-gp or not. In this study, an in silico multiclass classification model capable of predicting the probability of a compound to interact with P-gp was developed using a counter-propagation artificial neural network (CP ANN) based on a set of 2D molecular descriptors, as well as an extensive dataset of 2512 compounds (1178 P-gp inhibitors, 477 P-gp substrates and 857 P-gp non-active compounds). The model provided a good classification performance, producing non error rate (NER) values of 0.93 for the training set and 0.85 for the test set, while the average precision (AvPr) was 0.93 for the training set and 0.87 for the test set. An external validation set of 385 compounds was used to challenge the model's performance. On the external validation set the NER and AvPr values were 0.70 for both indices. We believe that this in silico classifier could be effectively used as a reliable virtual screening tool for identifying potential P-gp ligands.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Redes Neurales de la Computación , Animales , Descubrimiento de Drogas , Humanos , Ratones , Modelos Moleculares , Modelos Teóricos
15.
Molecules ; 24(5)2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30818768

RESUMEN

Phenols are the most abundant naturally accessible antioxidants present in a human normal diet. Since numerous beneficial applications of phenols as preventive agents in various diseases were revealed, the evaluation of phenols bioavailability is of high interest of researchers, consumers and drug manufacturers. The hydrophilic nature of phenols makes a cell membrane penetration difficult, which imply an alternative way of uptake via membrane transporters. However, the structural and functional data of membrane transporters are limited, thus the in silico modelling is really challenging and urgent tool in elucidation of transporter ligands. Focus of this research was a particular transporter bilitranslocase (BTL). BTL has a broad tissue expression (vascular endothelium, absorptive and excretory epithelia) and can transport wide variety of poly-aromatic compounds. With available BTL data (pKi [mmol/L] for 120 organic compounds) a robust and reliable QSAR models for BTL transport activity were developed and extrapolated on 300 phenolic compounds. For all compounds the transporter profiles were assessed and results show that dietary phenols and some drug candidates are likely to interact with BTL. Moreover, synopsis of predictions from BTL models and hits/predictions of 20 transporters from Metrabase and Chembench platforms were revealed. With such joint transporter analyses a new insights for elucidation of BTL functional role were acquired. Regarding limitation of models for virtual profiling of transporter interactions the computational approach reported in this study could be applied for further development of reliable in silico models for any transporter, if in vitro experimental data are available.


Asunto(s)
Membrana Celular/enzimología , Ceruloplasmina/metabolismo , Simulación por Computador , Fenoles/metabolismo , Transporte Biológico , Transporte Biológico Activo , Bases de Datos Farmacéuticas , Humanos
16.
Ecotoxicol Environ Saf ; 170: 548-558, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30572250

RESUMEN

The release of active pharmaceutical ingredients (APIs) into the environment is of great concern for aquatic ecosystem as many of these chemicals are designed to exert biological activity. Hence, their impact on non-target organisms like fish would not be surprising. In this respect, we revisited fish toxicity data of pharmaceuticals to generate linear and non-linear quantitative structure-toxicity relationships (QSTRs). We predicted fish lethality data from the validated QSTR models for 120 APIs with no experimental fish toxicity data. Toxicity of APIs on aquatic organisms is not fully characterized. Therefore, to provide a mechanistic insight for the assessment of API's toxicity to fish, the outcome of the derived QSTR models was integrated with structure-based toxicophore and molecular docking studies, utilizing the biomarker enzyme acetylcholinesterase originating from fish Torpedo californica (TcAChE). Toxicophore virtual screening of 60 chemicals with pT > 0 identified 23 hits as potential TcAChE binders with binding free energies ranging from -6.5 to -12.9 kcal/mol. The TcAChE-ligand interaction analysis revealed a good nesting of all 23 hits within TcAChE binding site through establishing strong lipophilic and hydrogen bonding interactions with the surrounding key amino acid residues. Among the chemicals passing the criteria of our integrated approach, majority of APIs belong noticeably to the Central Nervous System class. The screened chemicals displayed not only comprehensive toxicophore coverage, but also strong binding affinities according to the docking calculations, mainly due to interactions with TcAChE's key amino acid residues Tyr121, Tyr130, Tyr334, Trp84, Phe290, Phe330, Phe331, Ser122, and Ser200. Moreover, we propose here that binding of pharmaceuticals to AChE might have a potential in triggering molecular initiating events for adverse outcome pathways (AOPs), which in turn can play an important role for future screening of APIs lacking fish lethality data.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Preparaciones Farmacéuticas/química , Torpedo/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Sitios de Unión , Inhibidores de la Colinesterasa/química , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua/química
17.
J Enzyme Inhib Med Chem ; 33(1): 1239-1247, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30141354

RESUMEN

Autolysin E (AtlE) is a cell wall degrading enzyme that catalyzes the hydrolysis of the ß-1,4-glycosidic bond between the N-acetylglucosamine and N-acetylmuramic acid units of the bacterial peptidoglycan. Using our recently determined crystal structure of AtlE from Staphylococcus aureus and a combination of pharmacophore modeling, similarity search, and molecular docking, a series of (Phenylureido)piperidinyl benzamides were identified as potential binders and surface plasmon resonance (SPR) and saturation-transfer difference (STD) NMR experiments revealed that discovered compounds bind to AtlE in a lower micromolar range. (phenylureido)piperidinyl benzamides are the first reported non-substrate-like compounds that interact with this enzyme and enable further study of the interaction of small molecules with bacterial AtlE as potential inhibitors of this target.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , N-Acetil Muramoil-L-Alanina Amidasa/antagonistas & inhibidores , Piperidinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Piperidinas/síntesis química , Piperidinas/química , Staphylococcus aureus/enzimología , Relación Estructura-Actividad
18.
J Cheminform ; 9(1): 30, 2017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29086050

RESUMEN

BACKGROUND: CPANNatNIC is software for development of counter-propagation artificial neural network models. Besides the interface for training of a new neural network it also provides an interface for visualisation of the results which was developed to aid in interpretation of the results and to use the program as a tool for read-across. RESULTS: The work presents the details of the program's interface. Parts of the interface are presented and how they can be used. The examples provided show how the user can build a new model and view the results of predictions using the interface. Examples are given to show how the software may be used in read-across. CONCLUSIONS: CPANNatNIC provides a simple user interface for model development and visualisation. The interface implements options which may simplify read-across procedure. Statistical results show better prediction accuracy of read-across predictions than model predictions where similar compounds could be identified, which indicates the importance of using read-across and usefulness of the program.

19.
Nanotoxicology ; 11(4): 475-483, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28330416

RESUMEN

The regulatory agencies should fulfil the data gap in toxicity for new chemicals including nano-sized compounds, like metal oxides nanoparticles (MeOx NPs) according to the registration, evaluation, authorisation and restriction of chemicals (REACH) legislation policy. This study demonstrates the perspective capability of neural network models for prediction of cytotoxicity of MeOx NPs to bacteria Escherichia coli (E. coli) for the widest range of metal oxides extracted from Periodic table. The counter propagation artificial neural network (CP ANN) models for prediction of cytotoxicity of MeOx NPs for data sets of 17, 36 and 72 metal oxides were employed in the study. The cytotoxicity of studied metal oxide NPs was correlated with (i) χ-metal electronegativity (EN) by Pauling scale and composition of metal oxides characterised by (ii) number of metal atoms in oxide, (iii) number of oxygen atoms in oxide and (iv) charge of metal cation in oxide. The paper describes the models in context of five OECD principles of validation models accepted for regulatory use. The recommendations were done for the minimal number of cytotoxicity tests needs for evaluation of the large set of MeOx with different oxidation states. The methodology is expected to be useful for potential hazard assessment of MeOx NPs and prioritisation for further testing and risk assessment.


Asunto(s)
Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Viabilidad Microbiana/efectos de los fármacos , Modelos Teóricos , Redes Neurales de la Computación , Óxidos/toxicidad , Nanopartículas del Metal/química , Óxidos/química , Valor Predictivo de las Pruebas , Pruebas de Toxicidad
20.
Comput Struct Biotechnol J ; 15: 232-242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28228927

RESUMEN

The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix-helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...