Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38603604

RESUMEN

MOTIVATION: Whole exome sequencing (WES) has emerged as a powerful tool for genetic research, enabling the collection of a tremendous amount of data about human genetic variation. However, properly identifying which variants are causative of a genetic disease remains an important challenge, often due to the number of variants that need to be screened. Expanding the screening to combinations of variants in two or more genes, as would be required under the oligogenic inheritance model, simply blows this problem out of proportion. RESULTS: We present here the High-throughput oligogenic prioritizer (Hop), a novel prioritization method that uses direct oligogenic information at the variant, gene and gene pair level to detect digenic variant combinations in WES data. This method leverages information from a knowledge graph, together with specialized pathogenicity predictions in order to effectively rank variant combinations based on how likely they are to explain the patient's phenotype. The performance of Hop is evaluated in cross-validation on 36 120 synthetic exomes for training and 14 280 additional synthetic exomes for independent testing. Whereas the known pathogenic variant combinations are found in the top 20 in approximately 60% of the cross-validation exomes, 71% are found in the same ranking range when considering the independent set. These results provide a significant improvement over alternative approaches that depend simply on a monogenic assessment of pathogenicity, including early attempts for digenic ranking using monogenic pathogenicity scores. AVAILABILITY AND IMPLEMENTATION: Hop is available at https://github.com/oligogenic/HOP.


Asunto(s)
Exoma , Humanos , Secuenciación del Exoma/métodos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional/métodos
2.
Europace ; 25(9)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37772950

RESUMEN

AIMS: Brugada syndrome (BrS) is a hereditary arrhythmic disease, associated with sudden cardiac death. To date, little is known about the psychosocial correlates and impacts associated with this disease. The aim of this study was to assess a set of patient-reported psychosocial outcomes, to better profile these patients, and to propose a tailored psychosocial care. METHODS AND RESULTS: Patients were recruited at the European reference Centre for BrS at Universitair Ziekenhuis Brussel, Belgium. Recruitment was undertaken in two phases: phase 1 (retrospective), patients with confirmed BrS, and phase 2 (prospective), patients referred for ajmaline testing who had an either positive or negative diagnosis. BrS patients were compared to controls from the general population. Two hundred and nine questionnaires were analysed (144 retrospective and 65 prospective). Collected patient-reported outcomes were on mental health (12 item General Health Questionnaire; GHQ-12), social support (Oslo Social Support Scale), health-related quality of life, presence of Type-D personality (Type-D Scale; DS14), coping styles (Brief-COPE), and personality dimensions (Ten Item Personality Inventory). Results showed higher mental distress (GHQ-12) in BrS patients (2.53 ± 3.03) than in the general population (P < 0.001) and higher prevalence (32.7%) of Type D personality (P < 0.001) in patients with confirmed Brugada syndrome (BrS +). A strong correlation was found in the BrS + group (0.611, P < 0.001) between DS14 negative affectivity subscale and mental distress (GHQ-12). CONCLUSION: Mental distress and type D personality are significantly more common in BrS patients compared to the general population. This clearly illustrates the necessity to include mental health screening and care as standard for BrS.


Asunto(s)
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/terapia , Síndrome de Brugada/complicaciones , Salud Mental , Estudios Prospectivos , Estudios Retrospectivos , Calidad de Vida , Medición de Resultados Informados por el Paciente , Electrocardiografía/métodos
3.
BMC Bioinformatics ; 24(1): 324, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644440

RESUMEN

BACKGROUND: Understanding the impact of gene interactions on disease phenotypes is increasingly recognised as a crucial aspect of genetic disease research. This trend is reflected by the growing amount of clinical research on oligogenic diseases, where disease manifestations are influenced by combinations of variants on a few specific genes. Although statistical machine-learning methods have been developed to identify relevant genetic variant or gene combinations associated with oligogenic diseases, they rely on abstract features and black-box models, posing challenges to interpretability for medical experts and impeding their ability to comprehend and validate predictions. In this work, we present a novel, interpretable predictive approach based on a knowledge graph that not only provides accurate predictions of disease-causing gene interactions but also offers explanations for these results. RESULTS: We introduce BOCK, a knowledge graph constructed to explore disease-causing genetic interactions, integrating curated information on oligogenic diseases from clinical cases with relevant biomedical networks and ontologies. Using this graph, we developed a novel predictive framework based on heterogenous paths connecting gene pairs. This method trains an interpretable decision set model that not only accurately predicts pathogenic gene interactions, but also unveils the patterns associated with these diseases. A unique aspect of our approach is its ability to offer, along with each positive prediction, explanations in the form of subgraphs, revealing the specific entities and relationships that led to each pathogenic prediction. CONCLUSION: Our method, built with interpretability in mind, leverages heterogenous path information in knowledge graphs to predict pathogenic gene interactions and generate meaningful explanations. This not only broadens our understanding of the molecular mechanisms underlying oligogenic diseases, but also presents a novel application of knowledge graphs in creating more transparent and insightful predictors for genetic research.


Asunto(s)
Epistasis Genética , Reconocimiento de Normas Patrones Automatizadas , Aprendizaje Automático , Fenotipo , Ontología de Genes
4.
BMC Bioinformatics ; 24(1): 179, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127601

RESUMEN

BACKGROUND: The prediction of potentially pathogenic variant combinations in patients remains a key task in the field of medical genetics for the understanding and detection of oligogenic/multilocus diseases. Models tailored towards such cases can help shorten the gap of missing diagnoses and can aid researchers in dealing with the high complexity of the derived data. The predictor VarCoPP (Variant Combinations Pathogenicity Predictor) that was published in 2019 and identified potentially pathogenic variant combinations in gene pairs (bilocus variant combinations), was the first important step in this direction. Despite its usefulness and applicability, several issues still remained that hindered a better performance, such as its False Positive (FP) rate, the quality of its training set and its complex architecture. RESULTS: We present VarCoPP2.0: the successor of VarCoPP that is a simplified, faster and more accurate predictive model identifying potentially pathogenic bilocus variant combinations. Results from cross-validation and on independent data sets reveal that VarCoPP2.0 has improved in terms of both sensitivity (95% in cross-validation and 98% during testing) and specificity (5% FP rate). At the same time, its running time shows a significant 150-fold decrease due to the selection of a simpler Balanced Random Forest model. Its positive training set now consists of variant combinations that are more confidently linked with evidence of pathogenicity, based on the confidence scores present in OLIDA, the Oligogenic Diseases Database ( https://olida.ibsquare.be ). The improvement of its performance is also attributed to a more careful selection of up-to-date features identified via an original wrapper method. We show that the combination of different variant and gene pair features together is important for predictions, highlighting the usefulness of integrating biological information at different levels. CONCLUSIONS: Through its improved performance and faster execution time, VarCoPP2.0 enables a more accurate analysis of larger data sets linked to oligogenic diseases. Users can access the ORVAL platform ( https://orval.ibsquare.be ) to apply VarCoPP2.0 on their data.

5.
Database (Oxford) ; 20222022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35411390

RESUMEN

Improving the understanding of the oligogenic nature of diseases requires access to high-quality, well-curated Findable, Accessible, Interoperable, Reusable (FAIR) data. Although first steps were taken with the development of the Digenic Diseases Database, leading to novel computational advancements to assist the field, these were also linked with a number of limitations, for instance, the ad hoc curation protocol and the inclusion of only digenic cases. The OLIgogenic diseases DAtabase (OLIDA) presents a novel, transparent and rigorous curation protocol, introducing a confidence scoring mechanism for the published oligogenic literature. The application of this protocol on the oligogenic literature generated a new repository containing 916 oligogenic variant combinations linked to 159 distinct diseases. Information extracted from the scientific literature is supplemented with current knowledge support obtained from public databases. Each entry is an oligogenic combination linked to a disease, labelled with a confidence score based on the level of genetic and functional evidence that supports its involvement in this disease. These scores allow users to assess the relevance and proof of pathogenicity of each oligogenic combination in the database, constituting markers for reporting improvements on disease-causing oligogenic variant combinations. OLIDA follows the FAIR principles, providing detailed documentation, easy data access through its application programming interface and website, use of unique identifiers and links to existing ontologies. DATABASE URL: https://olida.ibsquare.be.


Asunto(s)
Programas Informáticos , Vocabulario Controlado , Bases de Datos Factuales
6.
J Neural Eng ; 19(1)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35086076

RESUMEN

Objective.Biosignal control is an interaction modality that allows users to interact with electronic devices by decoding the biological signals emanating from the movements or thoughts of the user. This manner of interaction with devices can enhance the sense of agency for users and enable persons suffering from a paralyzing condition to interact with everyday devices that would otherwise be challenging for them to use. It can also improve control of prosthetic devices and exoskeletons by making the interaction feel more natural and intuitive. However, with the current state of the art, several issues still need to be addressed to reliably decode user intent from biosignals and provide an improved user experience over other interaction modalities. One solution is to leverage advances in deep learning (DL) methods to provide more reliable decoding at the expense of added computational complexity. This scoping review introduces the basic concepts of DL and assists readers in deploying DL methods to a real-time control system that should operate under real-world conditions.Approach.The scope of this review covers any electronic device, but with an emphasis on robotic devices, as this is the most active area of research in biosignal control. We review the literature pertaining to the implementation and evaluation of control systems that incorporate DL to identify the main gaps and issues in the field, and formulate suggestions on how to mitigate them.Main results.The results highlight the main challenges in biosignal control with DL methods. Additionally, we were able to formulate guidelines on the best approach to designing, implementing and evaluating research prototypes that use DL in their biosignal control systems.Significance.This review should assist researchers that are new to the fields of biosignal control and DL in successfully deploying a full biosignal control system. Experts in their respective fields can use this article to identify possible avenues of research that would further advance the development of biosignal control with DL methods.


Asunto(s)
Aprendizaje Profundo , Sistemas de Computación , Movimiento
7.
Comput Struct Biotechnol J ; 19: 4919-4930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527196

RESUMEN

Protein folding and function are closely connected, but the exact mechanisms by which proteins fold remain elusive. Early folding residues (EFRs) are amino acids within a particular protein that induce the very first stages of the folding process. High-resolution EFR data are only available for few proteins, which has previously enabled the training of a protein sequence-based machine learning 'black box' predictor (EFoldMine). Such a black box approach does not allow a direct extraction of the 'early folding rules' embedded in the protein sequence, whilst such interpretation is essential to improve our understanding of how the folding process works. We here apply and investigate a novel 'grey box' approach to the prediction of EFRs from protein sequence to gain mechanistic residue-level insights into the sequence determinants of EFRs in proteins. We interpret the rule set for three datasets, a default set comprised of natural proteins, a scrambled set comprised of the scrambled default set sequences, and a set of de novo designed proteins. Finally, we relate these data to the secondary structure adopted in the folded protein and provide all information online via http://xefoldmine.bio2byte.be/, as a resource to help understand and steer early protein folding.

8.
Ethics Inf Technol ; 23(Suppl 1): 127-133, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584129

RESUMEN

A volunteer effort by Artificial Intelligence (AI) researchers has shown it can deliver significant research outcomes rapidly to help tackle COVID-19. Within two months, CLAIRE's self-organising volunteers delivered the World's first comprehensive curated repository of COVID-19-related datasets useful for drug-repurposing, drafted review papers on the role CT/X-ray scan analysis and robotics could play, and progressed research in other areas. Given the pace required and nature of voluntary efforts, the teams faced a number of challenges. These offer insights in how better to prepare for future volunteer scientific efforts and large scale, data-dependent AI collaborations in general. We offer seven recommendations on how to best leverage such efforts and collaborations in the context of managing future crises.

9.
J Chromatogr A ; 1628: 461435, 2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32822975

RESUMEN

We report on the performance of three classes of evolutionary algorithms (genetic algorithms (GA), evolution strategies (ES) and covariance matrix adaptation evolution strategy (CMA-ES)) as a means to enhance searches in the method development spaces of 1D- and 2D-chromatography. After optimisation of the design parameters of the different algorithms, they were benchmarked against the performance of a plain grid search. It was found that all three classes significantly outperform the plain grid search, especially in terms of the number of search runs needed to achieve a given separation quality. As soon as more than 100 search runs are needed, the ES algorithm clearly outperforms the GA and CMA-ES algorithms, with the latter performing very well for short searches (<50 search runs) but being susceptible to convergence to local optima for longer searches. It was also found that the performance of the ES and GA algorithms, as well as the grid search, follow a hyperbolic law in the large search run number limit, such that the convergence rate parameter of this hyperbolic function can be used to quantify the difference in required number of search runs for these algorithms. In agreement with one's physical expectations, it was also found that the general advantage of the GA and ES algorithms over the grid search, as well as their mutual performance differences, grow with increasing difficulty of the separation problem.


Asunto(s)
Algoritmos , Cromatografía/métodos , Cromatografía de Fase Inversa , Simulación por Computador
10.
Sci Rep ; 10(1): 6728, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317732

RESUMEN

Multi-agent coordination is prevalent in many real-world applications. However, such coordination is challenging due to its combinatorial nature. An important observation in this regard is that agents in the real world often only directly affect a limited set of neighbouring agents. Leveraging such loose couplings among agents is key to making coordination in multi-agent systems feasible. In this work, we focus on learning to coordinate. Specifically, we consider the multi-agent multi-armed bandit framework, in which fully cooperative loosely-coupled agents must learn to coordinate their decisions to optimize a common objective. We propose multi-agent Thompson sampling (MATS), a new Bayesian exploration-exploitation algorithm that leverages loose couplings. We provide a regret bound that is sublinear in time and low-order polynomial in the highest number of actions of a single agent for sparse coordination graphs. Additionally, we empirically show that MATS outperforms the state-of-the-art algorithm, MAUCE, on two synthetic benchmarks, and a novel benchmark with Poisson distributions. An example of a loosely-coupled multi-agent system is a wind farm. Coordination within the wind farm is necessary to maximize power production. As upstream wind turbines only affect nearby downstream turbines, we can use MATS to efficiently learn the optimal control mechanism for the farm. To demonstrate the benefits of our method toward applications we apply MATS to a realistic wind farm control task. In this task, wind turbines must coordinate their alignments with respect to the incoming wind vector in order to optimize power production. Our results show that MATS improves significantly upon state-of-the-art coordination methods in terms of performance, demonstrating the value of using MATS in practical applications with sparse neighbourhood structures.

11.
Nucleic Acids Res ; 47(W1): W93-W98, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31147699

RESUMEN

A tremendous amount of DNA sequencing data is being produced around the world with the ambition to capture in more detail the mechanisms underlying human diseases. While numerous bioinformatics tools exist that allow the discovery of causal variants in Mendelian diseases, little to no support is provided to do the same for variant combinations, an essential task for the discovery of the causes of oligogenic diseases. ORVAL (the Oligogenic Resource for Variant AnaLysis), which is presented here, provides an answer to this problem by focusing on generating networks of candidate pathogenic variant combinations in gene pairs, as opposed to isolated variants in unique genes. This online platform integrates innovative machine learning methods for combinatorial variant pathogenicity prediction with visualization techniques, offering several interactive and exploratory tools, such as pathogenic gene and protein interaction networks, a ranking of pathogenic gene pairs, as well as visual mappings of the cellular location and pathway information. ORVAL is the first web-based exploration platform dedicated to identifying networks of candidate pathogenic variant combinations with the sole ambition to help in uncovering oligogenic causes for patients that cannot rely on the classical disease analysis tools. ORVAL is available at https://orval.ibsquare.be.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Programas Informáticos , Biología Computacional , Enfermedades Genéticas Congénitas/diagnóstico , Humanos , Mutación/genética , Análisis de Secuencia de ADN
12.
PLoS Negl Trop Dis ; 13(5): e0007231, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31067235

RESUMEN

In recent years, an increasing number of outbreaks of Dengue, Chikungunya and Zika viruses have been reported in Asia and the Americas. Monitoring virus genotype diversity is crucial to understand the emergence and spread of outbreaks, both aspects that are vital to develop effective prevention and treatment strategies. Hence, we developed an efficient method to classify virus sequences with respect to their species and sub-species (i.e. serotype and/or genotype). This tool provides an easy-to-use software implementation of this new method and was validated on a large dataset assessing the classification performance with respect to whole-genome sequences and partial-genome sequences. Available online: http://krisp.org.za/tools.php.


Asunto(s)
Virus Chikungunya/aislamiento & purificación , Biología Computacional/métodos , Virus del Dengue/aislamiento & purificación , Virus Zika/aislamiento & purificación , Fiebre Chikungunya/virología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Dengue/virología , Virus del Dengue/clasificación , Virus del Dengue/genética , Genoma Viral , Genotipo , Filogenia , Virus Zika/clasificación , Virus Zika/genética , Infección por el Virus Zika/virología
13.
Proc Natl Acad Sci U S A ; 116(24): 11878-11887, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31127050

RESUMEN

Notwithstanding important advances in the context of single-variant pathogenicity identification, novel breakthroughs in discerning the origins of many rare diseases require methods able to identify more complex genetic models. We present here the Variant Combinations Pathogenicity Predictor (VarCoPP), a machine-learning approach that identifies pathogenic variant combinations in gene pairs (called digenic or bilocus variant combinations). We show that the results produced by this method are highly accurate and precise, an efficacy that is endorsed when validating the method on recently published independent disease-causing data. Confidence labels of 95% and 99% are identified, representing the probability of a bilocus combination being a true pathogenic result, providing geneticists with rational markers to evaluate the most relevant pathogenic combinations and limit the search space and time. Finally, the VarCoPP has been designed to act as an interpretable method that can provide explanations on why a bilocus combination is predicted as pathogenic and which biological information is important for that prediction. This work provides an important step toward the genetic understanding of rare diseases, paving the way to clinical knowledge and improved patient care.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Enfermedades Raras/genética , Marcadores Genéticos/genética , Humanos
14.
Eur J Trauma Emerg Surg ; 45(1): 39-48, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30542747

RESUMEN

PURPOSE: Major trauma remains a significant cause of morbidity and mortality in the developed and developing world. In 2013, nearly 5 million people worldwide died from their injuries, and almost 1 billion individuals sustained injuries that warranted some type of healthcare, accounting for around 10% of the global burden of disease in general. Behind the statistics, severe trauma takes a major toll on individuals, their families and healthcare systems. Management of the patient with severe trauma requires multiple interventions in a highly time-sensitive context and fragmentation of care, characterised by loss of information and time among disciplines, departments and individuals, both outside the hospital and within it, is frequent. Outcomes may be improved by better streamlining of pre- and intra-hospital care. METHODS: We describe the basis for development of a multi-stakeholder consortium by the European Critical Care Foundation working closely with a number of European Scientific Societies to address and overcome problems of fragmentation in the care of patients with severe trauma. RESULT: The consortium will develop and introduce an information management system adapted to severe trauma, which will integrate continuous monitoring of vital parameters and point-of-care diagnostics. The key innovation of the project is to harness the power of information technologies and artificial intelligence to provide computer-enhanced clinical evaluation and decision-support to streamline the multiple points at which information and time are potentially lost. CONCLUSIONS: The severe trauma management platform thus created could have multiple benefits beyond its immediate use in managing the care of injured patients.


Asunto(s)
Cuidados Críticos/normas , Servicios Médicos de Urgencia/normas , Servicio de Urgencia en Hospital/normas , Heridas y Lesiones/terapia , Eficiencia Organizacional , Europa (Continente) , Fundaciones , Humanos , Modelos Organizacionales , Sistemas de Atención de Punto , Sociedades Médicas
15.
Viruses ; 10(10)2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340326

RESUMEN

Dengue virus (DENV) is estimated to cause 390 million infections per year worldwide. A quarter of these infections manifest clinically and are associated with a morbidity and mortality that put a significant burden on the affected regions. Reports of increased frequency, intensity, and extended geographical range of outbreaks highlight the virus's ongoing global spread. Persistent transmission in endemic areas and the emergence in territories formerly devoid of transmission have shaped DENV's current genetic diversity and divergence. This genetic layout is hierarchically organized in serotypes, genotypes, and sub-genotypic clades. While serotypes are well defined, the genotype nomenclature and classification system lack consistency, which complicates a broader analysis of their clinical and epidemiological characteristics. We identify five key challenges: (1) Currently, there is no formal definition of a DENV genotype; (2) Two different nomenclature systems are used in parallel, which causes significant confusion; (3) A standardized classification procedure is lacking so far; (4) No formal definition of sub-genotypic clades is in place; (5) There is no consensus on how to report antigenic diversity. Therefore, we believe that the time is right to re-evaluate DENV genetic diversity in an essential effort to provide harmonization across DENV studies.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Dengue/virología , Virus del Dengue/genética , Variación Genética , Genotipo , Humanos , Filogenia , Terminología como Asunto
16.
Sensors (Basel) ; 18(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30041421

RESUMEN

Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects' signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications.

17.
Curr Opin Virol ; 28: 92-101, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29275182

RESUMEN

The adaptive potential of HIV-1 is a vital mechanism to evade host immune responses and antiviral treatment. However, high evolutionary rates during persistent infection can impair transmission efficiency and alter disease progression in the new host, resulting in a delicate trade-off between within-host virulence and between-host infectiousness. This trade-off is visible in the disparity in evolutionary rates at within-host and between-host levels, and preferential transmission of ancestral donor viruses. Understanding the impact of within-host evolution for epidemiological studies is essential for the design of preventive and therapeutic measures. Herein, we review recent theoretical and experimental work that generated new insights into the complex link between within-host evolution and between-host fitness, revealing temporal and selective processes underlying the structure and dynamics of HIV-1 transmission.


Asunto(s)
Evolución Molecular , Infecciones por VIH/transmisión , VIH-1/genética , Epidemias , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Modelos Teóricos , Virulencia
18.
Bioinformatics ; 33(24): 3993-3995, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28961923

RESUMEN

MOTIVATION: Clinicians, health officials and researchers are interested in the epidemic spread of pathogens in both space and time to support the optimization of intervention measures and public health policies. Large sequence databases of virus sequences provide an interesting opportunity to study this spread through phylogenetic analysis. To infer knowledge from large phylogenetic trees, potentially encompassing tens of thousands of virus strains, an efficient method for data exploration is required. The clades that are visited during this exploration should be annotated with strain characteristics (e.g. transmission risk group, tropism, drug resistance profile) and their geographic context. RESULTS: PhyloGeoTool implements a visual method to explore large phylogenetic trees and to depict characteristics of strains and clades, including their geographic context, in an interactive way. PhyloGeoTool also provides the possibility to position new virus strains relative to the existing phylogenetic tree, allowing users to gain insight in the placement of such new strains without the need to perform a de novo reconstruction of the phylogeny. AVAILABILITY AND IMPLEMENTATION: https://github.com/rega-cev/phylogeotool (Freely available: open source software project). CONTACT: phylogeotool@kuleuven.be. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Métodos Epidemiológicos , Filogenia , Programas Informáticos , Virosis/epidemiología , Análisis por Conglomerados , Bases de Datos de Ácidos Nucleicos , Humanos
19.
Infect Genet Evol ; 53: 15-23, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28499845

RESUMEN

Resistance-associated variants (RAVs) have been shown to influence treatment response to direct-acting antivirals (DAAs) and first generation NS3/4A protease inhibitors (PIs) in particular. Interpretation of hepatitis C virus (HCV) genotypic drug resistance remains a challenge, especially in patients who previously failed DAA therapy and need to be retreated with a second DAA based regimen. Bayesian network (BN) learning on HCV sequence data from patients treated with DAAs could provide insight in resistance pathways against PIs for HCV subtypes 1a and 1b, in a similar way as applied before for HIV. The publicly available 'Rega-BN' tool chain was developed to study associative analyses for various pathogens. Our first analysis, comparing sequences from PI-naïve and PI-experienced patients, determined that NS3 substitutions R155K and V36M arise with PI-exposure in HCV1a infected patients, and were defined as major and minor resistance-associated variants respectively. NS3 variant 174H was newly identified as potentially related to PI resistance. In a second analysis, NS3 sequences from PI-naïve patients who cleared the virus during PI therapy and from PI-naïve patients who failed PI therapy were compared, showing that NS3 baseline variant 67S predisposes to treatment-failure and variant 72I to treatment success. This approach has the potential to better characterize the role of more RAVs, if sufficient therapy annotated sequence data becomes available in curated public databases. In addition, polymorphisms present in baseline sequences that predispose patients to therapy failure can be identified using this approach.


Asunto(s)
Proteínas Portadoras/genética , Farmacorresistencia Viral/genética , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Prolina/análogos & derivados , Proteínas no Estructurales Virales/genética , Sustitución de Aminoácidos , Antivirales/uso terapéutico , Teorema de Bayes , Estudios de Cohortes , Bases de Datos Genéticas , Europa (Continente)/epidemiología , Femenino , Genotipo , Hepacivirus/clasificación , Hepacivirus/efectos de los fármacos , Hepacivirus/aislamiento & purificación , Hepatitis C Crónica/epidemiología , Hepatitis C Crónica/virología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Persona de Mediana Edad , Mutación Missense , Prolina/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , ARN Viral/genética
20.
Mol Divers ; 18(3): 637-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24671521

RESUMEN

Antibiotic resistance has increased over the past two decades. New approaches for the discovery of novel antibacterials are required and innovative strategies will be necessary to identify novel and effective candidates. Related to this problem, the exploration of bacterial targets that remain unexploited by the current antibiotics in clinical use is required. One of such targets is the ß-ketoacyl-acyl carrier protein synthase III (FabH). Here, we report a ligand-based modeling methodology for the virtual-screening of large collections of chemical compounds in the search of potential FabH inhibitors. QSAR models are developed for a diverse dataset of 296 FabH inhibitors using an in-house modeling framework. All models showed high fitting, robustness, and generalization capabilities. We further investigated the performance of the developed models in a virtual screening scenario. To carry out this investigation, we implemented a desirability-based algorithm for decoys selection that was shown effective in the selection of high quality decoys sets. Once the QSAR models were validated in the context of a virtual screening experiment their limitations arise. For this reason, we explored the potential of ensemble modeling to overcome the limitations associated to the use of single classifiers. Through a detailed evaluation of the virtual screening performance of ensemble models it was evidenced, for the first time to our knowledge, the benefits of this approach in a virtual screening scenario. From all the obtained results, we could arrive to a significant main conclusion: at least for FabH inhibitors, virtual screening performance is not guaranteed by predictive QSAR models.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Relación Estructura-Actividad Cuantitativa , Interfaz Usuario-Computador , Escherichia coli/enzimología , Ligandos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...