Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1287123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419658

RESUMEN

Introduction: Understanding the neural code has been one of the central aims of neuroscience research for decades. Spikes are commonly referred to as the units of information transfer, but multi-unit activity (MUA) recordings are routinely analyzed in aggregate forms such as binned spike counts, peri-stimulus time histograms, firing rates, or population codes. Various forms of averaging also occur in the brain, from the spatial averaging of spikes within dendritic trees to their temporal averaging through synaptic dynamics. However, how these forms of averaging are related to each other or to the spatial and temporal units of information representation within the neural code has remained poorly understood. Materials and methods: In this work we developed NeuroPixelHD, a symbolic hyperdimensional model of MUA, and used it to decode the spatial location and identity of static images shown to n = 9 mice in the Allen Institute Visual Coding-NeuroPixels dataset from large-scale MUA recordings. We parametrically varied the spatial and temporal resolutions of the MUA data provided to the model, and compared its resulting decoding accuracy. Results: For almost all subjects, we found 125ms temporal resolution to maximize decoding accuracy for both the spatial location of Gabor patches (81 classes for patches presented over a 9×9 grid) as well as the identity of natural images (118 classes corresponding to 118 images) across the whole brain. This optimal temporal resolution nevertheless varied greatly between different regions, followed a sensory-associate hierarchy, and was significantly modulated by the central frequency of theta-band oscillations across different regions. Spatially, the optimal resolution was at either of two mesoscale levels for almost all mice: the area level, where the spiking activity of all neurons within each brain area are combined, and the population level, where neuronal spikes within each area are combined across fast spiking (putatively inhibitory) and regular spiking (putatively excitatory) neurons, respectively. We also observed an expected interplay between optimal spatial and temporal resolutions, whereby increasing the amount of averaging across one dimension (space or time) decreases the amount of averaging that is optimal across the other dimension, and vice versa. Discussion: Our findings corroborate existing empirical practices of spatiotemporal binning and averaging in MUA data analysis, and provide a rigorous computational framework for optimizing the level of such aggregations. Our findings can also synthesize these empirical practices with existing knowledge of the various sources of biological averaging in the brain into a new theory of neural information processing in which the unit of information varies dynamically based on neuronal signal and noise correlations across space and time.

2.
Nat Biomed Eng ; 8(1): 68-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38082179

RESUMEN

It is typically assumed that large networks of neurons exhibit a large repertoire of nonlinear behaviours. Here we challenge this assumption by leveraging mathematical models derived from measurements of local field potentials via intracranial electroencephalography and of whole-brain blood-oxygen-level-dependent brain activity via functional magnetic resonance imaging. We used state-of-the-art linear and nonlinear families of models to describe spontaneous resting-state activity of 700 participants in the Human Connectome Project and 122 participants in the Restoring Active Memory project. We found that linear autoregressive models provide the best fit across both data types and three performance metrics: predictive power, computational complexity and the extent of the residual dynamics unexplained by the model. To explain this observation, we show that microscopic nonlinear dynamics can be counteracted or masked by four factors associated with macroscopic dynamics: averaging over space and over time, which are inherent to aggregated macroscopic brain activity, and observation noise and limited data samples, which stem from technological limitations. We therefore argue that easier-to-interpret linear models can faithfully describe macroscopic brain dynamics during resting-state conditions.


Asunto(s)
Encéfalo , Conectoma , Humanos , Modelos Lineales , Encéfalo/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Modelos Teóricos
3.
Front Aging Neurosci ; 15: 1085153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920384

RESUMEN

Background: Controllability is a measure of the brain's ability to orchestrate neural activity which can be quantified in terms of properties of the brain's network connectivity. Evidence from the literature suggests that aging can exert a general effect on whole-brain controllability. Mounting evidence, on the other hand, suggests that parenthood and motherhood in particular lead to long-lasting changes in brain architecture that effectively slow down brain aging. We hypothesize that parenthood might preserve brain controllability properties from aging. Methods: In a sample of 814 healthy individuals (aged 33.9 ± 12.7 years, 522 females), we estimate whole-brain controllability and compare the aging effects in subjects with vs. those without children. We use diffusion tensor imaging (DTI) to estimate the brain structural connectome. The level of brain control is then calculated from the connectomic properties of the brain structure. Specifically, we measure the network control over many low-energy state transitions (average controllability) and the network control over difficult-to-reach states (modal controllability). Results and conclusion: In nulliparous females, whole-brain average controllability increases, and modal controllability decreases with age, a trend that we do not observe in parous females. Statistical comparison of the controllability metrics shows that modal controllability is higher and average controllability is lower in parous females compared to nulliparous females. In men, we observed the same trend, but the difference between nulliparous and parous males do not reach statistical significance. Our results provide strong evidence that parenthood contradicts aging effects on brain controllability and the effect is stronger in mothers.

4.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36874281

RESUMEN

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

5.
J Neural Eng ; 20(1)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36633267

RESUMEN

Objective:Recent progress in network sciences has made it possible to apply key findings from control theory to the study of networks. Referred to as network control theory, this framework describes how the interactions between interconnected system elements and external energy sources, potentially constrained by different optimality criteria, result in complex network behavior. A typical example is the quantification of the functional role certain brain regions or symptoms play in shaping the temporal dynamics of brain activity or the clinical course of a disease, a property that is quantified in terms of the so-called controllability metrics. Critically though, contrary to the engineering context in which control theory was originally developed, a mathematical understanding of the network nodes and connections in neurosciences cannot be assumed. For instance, in the case of psychological systems such as those studied to understand psychiatric disorders, a potentially large set of related variables are unknown. As such, while the measures offered by network control theory would be mathematically correct, in that they can be calculated with high precision, they could have little translational values with respect to their putative role suggested by controllability metrics. It is therefore critical to understand if and how the controllability metrics estimated over subnetworks would deviate, if access to the complete set of variables, as is common in neurosciences, cannot be taken for granted.Approach:In this paper, we use a host of simulations based on synthetic as well as structural magnetic resonance imaging (MRI) data to study the potential deviation of controllability metrics in sub- compared to the full networks. Specifically, we estimate average- and modal-controllability, two of the most widely used controllability measures in neurosciences, in a large number of settings where we systematically vary network type, network size, and edge density.Main results:We find out, across all network types we test, that average and modal controllability are systematically, over- or underestimated depending on the number of nodes in the sub- and full network and the edge density.Significance:Finally, we provide formal theoretical proof that our observations generalize to any network type and discuss the ramifications of this systematic bias and potential solutions to alleviate the problem.


Asunto(s)
Encéfalo , Trastornos Mentales , Humanos , Imagen por Resonancia Magnética
6.
Netw Neurosci ; 4(4): 1122-1159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195951

RESUMEN

Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...