Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 235(5): 4376-4387, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31612496

RESUMEN

Dopamine (DA) is produced from tyrosine by tyrosine hydroxylase (TH). A recent study has reported that DA promotes the mineralization of murine preosteoblasts. However, the role of DA in odontoblasts has not been examined. Therefore, in this investigation, we researched the expression of TH and DA in odontoblasts and the effects of DA on the differentiation of preodontoblasts (KN-3 cells). Immunostaining showed that TH and DA were intensely expressed in odontoblasts and preodontoblasts of rat incisors and molars. KN-3 cells expressed D1-like and D2-like receptors for DA. Furthermore, DA promoted odontoblastic differentiation of KN-3 cells, whereas an antagonist of D1-like receptors and a PKA signaling blocker, inhibited such differentiation. However, antagonists of D2-like receptors promoted differentiation. These results suggested that DA in preodontoblasts and odontoblasts might promote odontoblastic differentiation through D1-like receptors, but not D2-like receptors, and PKA signaling in an autocrine or paracrine manner and plays roles in dentinogenesis.


Asunto(s)
Dopamina/metabolismo , Regulación de la Expresión Génica/fisiología , Odontoblastos/metabolismo , Animales , Diferenciación Celular , Línea Celular , Pulpa Dental/citología , Dopamina/genética , Masculino , Ratas , Ratas Sprague-Dawley
2.
J Cell Physiol ; 234(1): 849-859, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30078208

RESUMEN

Cellular senescence has been suggested to be involved in physiological changes of cytokine production. Previous studies showed that the concentration of tumor necrosis factor-α (TNF-α) is higher in the blood of aged people compared with that of young people. So far, the precise effects of TNF-α on the odontoblastic differentiation of pulp cells have been controversial. Therefore, we aimed to clarify how this cytokine affected pulp cells during aging. Human dental pulp cells (HDPCs) were cultured until reaching the plateau of their growth, and the cells were isolated at actively (young HDPCs; yHDPCs) or inactively (senescent HDPCs; sHDPCs) proliferating stages. sHDPCs expressed senescence-related molecules while yHDPCs did not. When these HDPCs were cultured in an odontoblast-inductive medium, both young and senescent cells showed mineralization, but mineralization in sHDPCs was lower compared with yHDPCs. However, the administration of TNF-α to this culture medium altered these responses: yHDPCs showed downregulated mineralization, while sHDPCs exhibited significantly increased mineralization. Furthermore, the expression of tumor necrosis factor receptor 1 (TNFR1), a receptor of TNF-α, was significantly upregulated in sHDPCs compared with yHDPCs. Downregulation of TNFR1 expression led to decreased mineralization of TNF-α-treated sHDPCs, whereas restored the reduction in TNF-α-treated yHDPCs. These results suggested that sHDPCs preserved the odontoblastic differentiation capacity and TNF-α promoted odontoblastic differentiation of HDPCs with the progress of their population doublings through increased expression of TNFR1. Thus, TNF-α might exert a different effect on the odontoblastic differentiation of HDPCs depending on their proliferating activity. In addition, the calcification of pulp chamber with age may be related with increased reactivity of pulp cells to TNF-α.


Asunto(s)
Envejecimiento/genética , Pulpa Dental/citología , Odontoblastos/citología , Factor de Necrosis Tumoral alfa/farmacología , Calcificación Fisiológica/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Pulpa Dental/efectos de los fármacos , Pulpa Dental/crecimiento & desarrollo , Técnicas de Silenciamiento del Gen , Humanos , Odontoblastos/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA