Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Future Sci OA ; 10(1): FSO, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817366

RESUMEN

Colorectal cancer (CRC) is considered the third most common cancer in the world. In Mediterranean region, olives and olive oil play a substantial role in diet and medical traditional behaviors. They totally believe that high consumption of olive products can treat a wide range of diseases and decrease risk of illness. Oleuropein is the main active antioxidant molecule found in pre-mature olive fruit and leaves. Recently, it has been demonstrated that oleuropein is used in cancer therapy as an anti-proliferative and apoptotic agent for some cancer cells. In this review, we would like to explore the conclusive effects of oleuropein on CRC with respect to in vitro and in vivo studies.

2.
Heliyon ; 10(10): e30743, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38774322

RESUMEN

Anti-nucleolin (NCL) aptamer AS1411 is the first anticancer aptamer tested in clinical trials. Gold nanoparticles (AuNP) have been widely exploited for various biomedical applications due to their unique functional properties. In this study, we evaluated the colloidal stability and targeting capacity of AS1411-funtionalized AuNP (AuNP/NCL-Apt) against MCF-7 breast cancer cell line before and after lyophilization. Trehalose, mannitol, and sucrose at various concentrations were evaluated to determine their cryoprotection effects. Our results indicate that sucrose at 10 % (w/v) exhibits the best cryoprotection effect and minimal AuNP/NCL-Apt aggregation as confirmed by UV-Vis spectroscopy and dynamic light scattering (DLS) measurements. Moreover, the lyophilized AuNP/NCL-Apt at optimized formulation maintained its targeting and cytotoxic functionality against MCF-7 cells as proven by the cellular uptake assays utilizing flow cytometry and confocal laser scanning microscopy (CLSM). Quantitative PCR (qPCR) analysis of nucleolin-target gene expression also confirmed the effectiveness of AuNP/NCL-Apt. This study highlights the importance of selecting the proper type and concentration of cryoprotectant in the typical nanoparticle lyophilization process and contributes to our understanding of the physical and biological properties of functionalized nanoparticles upon lyophilization.

3.
Nanomedicine (Lond) ; 19(12): 1087-1101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661720

RESUMEN

Aim: To investigate the therapeutic potential of mebendazole (MBZ)-loaded nanostructured lipid carriers (NLCs). Methodology: NLC-MBZ was prepared and characterized to evaluate the in vitro and in vivo anticancer effects and the inhibitory effect on RanGTP and its potential as an antimetastatic treatment in vivo. Results: NLC-MBZ exhibited a size and charge of 155 ± 20 nm and -27 ± 0.5 mV, respectively, with 90.7% encapsulation. Free MBZ and NLC-MBZ had a 50% inhibitory concentration of 610 and 305 nM, respectively, against MDA-MB-231 cell lines. NLC-MBZ decreased tumor size, suppressed tumor lung metastases, and lowered the expression of CDC25A, SKP2, RbX1 and Cullin1 while boosting the Rb proteins. Conclusion: NLC-MBZ displayed antiangiogenic potential and resulted in a reduced rate of lung metastasis in vivo.


[Box: see text].


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Mebendazol , Mebendazol/farmacología , Mebendazol/uso terapéutico , Humanos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Línea Celular Tumoral , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Portadores de Fármacos/química , Lípidos/química , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos
4.
Expert Opin Drug Deliv ; 21(3): 399-422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38623735

RESUMEN

INTRODUCTION: Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED: Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION: The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.


Asunto(s)
Antibióticos Antineoplásicos , Cardiotoxicidad , Doxorrubicina , Portadores de Fármacos , Nanopartículas , Doxorrubicina/efectos adversos , Doxorrubicina/administración & dosificación , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Humanos , Animales , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Portadores de Fármacos/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Polímeros/química , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/inducido químicamente , Lípidos/química
5.
Nat Prod Res ; : 1-20, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666545

RESUMEN

Nano-phytosomes are considered as an efficient drug delivery system for phytochemicals. Phytosomes enhance stability and significantly improves phytochemicals bioavailability and therapeutic efficacy. Thorough meta-analysis of 93 articles, phytochemical versus phytosomes size, charge, polydispersity index (PDI) and IC50 values were investigated. Multivariate Analysis of Covariance revealed significant phytochemicals type effects, even when accounting for cancer cell type and phospholipid type as covariates. Least Significant Difference (LSD) post hoc tests described unique attributes among various phytosomes. Flavonoid-based phytosomes exhibited larger particle sizes than others. In contrast, terpenoid-based phytosomes displayed significantly lower charges. Flavonoids demonstrated higher poly dispersity index (PDI) values than alkaloids and polyphenols. Alkaloids exhibited more extensive PDI values, while polyphenols had lower PDI values than terpenoids. Furthermore, flavonoid-containing nanoparticles exhibited higher IC50 values than terpenoids. In conclusion, nano-phytosomes offer promising prospects for revolutionising drug delivery methodologies and advancing the development of innovative therapeutic solutions in the domain of cancer therapy.

6.
Ther Deliv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38469691

RESUMEN

Aim: In this study, we prepared, characterized and in vitro evaluated a 5-fluorouracil (5-FU)-loaded chitosan-acacia gum nanoparticles. Methods: Nanoparticles were characterized for their size, charge, morphology and encapsulation efficiency (EE%) followed by cellular investigations against HT-29 colon cancer cell line. Results: The nanoparticles exhibited a spherical morphological size with 94.42% EE%. Free 5-FU showed a fast and fully cumulative release after 6 h while 5-FU loaded into CS-AG NPs showed good entrapment and slow, prolonged 5-FU release even after 24 h. Enhanced IC50 for the 5-FU loaded NPs compared with free 5-FU against HT-29 colon cancer cell line was reported with high selectivity compared with normal fibroblast cells. Conclusion: 5-FU loaded NPs is promising nano-therapy against colon cancer.

7.
Bioanalysis ; 16(9): 369-384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497721

RESUMEN

This study was conducted to compare dissolution profiles of four Jordanian registered sildenafil (SDF) products to the originator. Dissolution samples were analyzed utilizing a validated and stability-indicating HPLC method in human plasma. Validation was performed for specificity, linearity, limit of detection, lower limit of quantification, precision, trueness and stability. SDF was extracted from plasma samples using liquid-liquid extraction. The analysis was performed utilizing isocratic elution on C18 column with 1.0 ml/min flow rate. The regression value was ∼0.999 over 3 days with drug recovery between 86.6 to 89.8%with 10 ng/ml lower limit of quantitation. This method displayed a good selectivity of SDF with improved stability under various conditions. The method was used for SDF quantification in dissolution medium. Similarity factors for local products varied according to the used mediums, but all SDF local products passed the dissolution in vitro test since all of them showed a released of >85% after 60 min at the dissolution mediums.


[Box: see text].


Asunto(s)
Citrato de Sildenafil , Citrato de Sildenafil/sangre , Citrato de Sildenafil/química , Citrato de Sildenafil/análisis , Cromatografía Líquida de Alta Presión/métodos , Humanos , Medicamentos Genéricos/química , Medicamentos Genéricos/análisis , Solubilidad , Jordania , Estabilidad de Medicamentos , Límite de Detección
8.
Nanoscale Adv ; 6(6): 1611-1642, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38482039

RESUMEN

Iron oxide nanozymes (IONzymes) are a class of magnetic nanoparticles that mimic the enzymatic activity of natural enzymes. These particles have received significant attention in recent years due to their unique properties, such as high stability, tunable magnetic responsiveness, and ability to act as biocatalysts for various chemical reactions. In this review, we aim to provide an overview of the production methods of magnetic nanozymes, including chemical, physical, and biological synthesis. The structure and design of magnetic nanozymes are also discussed in detail, as well as their applications in various fields such as biomedicine and environmental science. The results of various studies and the latest advances in the field of magnetic nanozymes are also discussed. This review provides valuable insights into the current state of magnetic nanozymes and highlights their potential for further development and application in various fields.

9.
Pathol Res Pract ; 254: 155161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280275

RESUMEN

Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.


Asunto(s)
Genes abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/uso terapéutico , Mesilato de Imatinib/farmacología , Pirimidinas/uso terapéutico , Piperazinas/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico , Resistencia a Antineoplásicos/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología
10.
Expert Opin Drug Deliv ; 21(2): 309-324, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38284386

RESUMEN

INTRODUCTION: The resistance to chemotherapy is a significant hurdle in breast cancer treatment, prompting the exploration of innovative strategies. This review discusses the potential of dual-loaded liposomal carriers to combat chemoresistance and improve outcomes for breast cancer patients. AREAS COVERED: This review discusses breast cancer chemotherapy resistance and dual-loaded liposomal carriers. Drug efflux pumps, DNA repair pathways, and signaling alterations are discussed as chemoresistance mechanisms. Liposomes can encapsulate several medicines and cargo kinds, according to the review. It examines how these carriers improve medication delivery, cancer cell targeting, and tumor microenvironment regulation. Also examined are dual-loaded liposomal carrier improvement challenges and techniques. EXPERT OPINION: The use of dual-loaded liposomal carriers represents a promising and innovative strategy in the battle against chemotherapy resistance in breast cancer. This article has explored the various mechanisms of chemoresistance in breast cancer, emphasizing the potential of dual-loaded liposomal carriers to overcome these challenges. These carriers offer versatility, enabling the encapsulation and precise targeting of multiple drugs with different modes of action, a crucial advantage when dealing with the complexity of breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Liposomas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Microambiente Tumoral
11.
J Liposome Res ; 34(1): 178-202, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37378553

RESUMEN

Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.


Asunto(s)
Liposomas , Fosfolípidos , Liposomas/química , Fosfolípidos/química , Colesterol/química , Estabilidad de Medicamentos
12.
Chem Biodivers ; 21(2): e202301470, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161147

RESUMEN

Doxorubicin (DOX) is widely used against solid tumors. Niosomes are self-assembled nanocarriers of non-ionic surfactants. DOX loaded into cationic niosomes (DOX-Nio) was prepared via thin film hydration method. DOX-Nio was then decorated with a hyaluronic acid (DOX-HA-Nio) via electrostatic interaction. DOX-Nio and DOX-HA-Nio displayed a particle size of 120.0±1.02 and 182.9±2.3 nm, and charge of + 35.5±0.15 and -15.6±0.25 mV, respectively, with PDI < 0.3. DOX-HA-Nio showed a good stability regarding size and charge over 4 weeks at 4 °C and maintain their integrity after lyophilization. HPLC results showed a 94.1±4.2 % encapsulation efficiency of DOX with good entrapment and slow, prolonged DOX release even after 48 hrs. Cell viability assay showed an IC50 of 14.26 nM for the DOX-HA-Nio against MCF-7 cell line with micromolar IC50 results against CD-44 negative cell lines (NIH/3T3). DOX-HA-Nio was proven to be an effective, targeted nanocarrier for DOX against MCF-7 cell line.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Liposomas , Ácido Hialurónico , Doxorrubicina/farmacología , Células MCF-7
13.
Chem Biodivers ; 20(11): e202301167, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37781742

RESUMEN

The abstract discusses the development of rutin-loaded nanoliposomes and their anti-colorectal cancer activity against human carcinoma cells (HT-29). The study characterizes the nanoliposomes using the thin-film hydration method and analyzes their size, charge, and polydispersity index. The encapsulation efficiency and drug loading ability of rutin at different concentrations were investigated. The nanoliposomes were found to be stable for up to one month at 4 °C and showed sustained drug release for up to 24 h. The anti-cancer activity of the rutin-loaded nanoliposomes was found to be concentration-dependent and significantly improved compared to free rutin. PEGylated nanoliposomes with rutin (1.8 mg/ml) showed the highest encapsulation efficiency and drug loading ability, along with improved selectivity against cancer cells. Overall, the study provides important insights into the potential use of rutin-loaded nanoliposomes for the treatment of colorectal cancer.


Asunto(s)
Carcinoma , Rutina , Humanos , Rutina/farmacología , Liposomas , Células HT29 , Polietilenglicoles
14.
Bioanalysis ; 15(23): 1439-1460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847048

RESUMEN

Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Neoplasias , Humanos , Sondas Moleculares , Monitoreo de Drogas , Biomarcadores
15.
Bioanalysis ; 15(23): 1393-1405, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847056

RESUMEN

This study aims to develop and validate an HPLC technique for the determination of fulvestrant and disulfiram in liposomes. Encapsulation of both drugs into liposomes may improve their anticancer potential. Validation was performed following the International Conference on Harmonization guidelines for specificity, linearity, limit of detection, limit of quantification, precision, accuracy and robustness. Method specificity displayed no interference and linearity over 25-200 and 12.5-100 µg/ml for fulvestrant and disulfiram, respectively. Precision and accuracy exhibited a low relative standard deviation (<1.70%) and appropriate recovery. The validated method could be designated as a proper method for the simultaneous determination of fulvestrant and disulfiram in liposomes. The liposomes displayed 148.5 ± 5.1 nm size. The encapsulation efficiencies were 73.52 and 50.50% for fulvestrant and disulfiram, respectively.


Asunto(s)
Disulfiram , Liposomas , Límite de Detección , Fulvestrant , Cromatografía Líquida de Alta Presión/métodos
17.
Polymers (Basel) ; 15(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37688223

RESUMEN

The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.

18.
Life Sci ; 329: 121964, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37473800

RESUMEN

PURPOSE: Existing prognostic biomarkers are inadequate for stratifying breast cancer patients with the highest risk of tumor progression at the time of diagnosis. Here, we demonstrate that the small GTPase Ran has predictive value for breast cancer (BC) patients as a whole, and for specific BC subtypes. PATIENTS AND METHODS: Ran expression was quantified by immunohistochemistry in 263 patients with primary breast cancer diagnosed at the Breast Unit, Royal Liverpool Hospital. Additionally as an independent validation, we also analyzed the mRNA expressions of Ran, ER, PR, and Cerb-2, the triple-negative endocrine receptors, and their associations with patient survival in a combined patient cohorts of multiple public datasets (n = 1079). We analyzed the data with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided. RESULTS: Ran nuclear, cytoplasmic, and total staining are substantially associated with poor survival, independent of conventional prognostic markers such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and lymph node status. According to the datasets, Ran was significantly correlated with distant metastasis-free survival (DMFS) and relapse-free survival (RFS). CONCLUSION: We found that Ran expression is a unique predictive biomarker for patient survival, metastasis, and tumor relapse. This biomarker could be used for diagnostic purposes, using formalin-fixed, paraffin-embedded tumor biopsy samples from breast cancer patients in the early stages.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Supervivencia sin Enfermedad , Recurrencia Local de Neoplasia , Pronóstico , Receptores de Progesterona/genética
19.
Chem Biodivers ; 20(8): e202300534, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37498138

RESUMEN

Olive leaf extract is a valuable source of phenolic compounds; primarily, oleuropein (major component) and rutin. This natural olive leaf extract has potential use as a therapeutic agent for cancer treatment. However, its clinical application is hindered by poor pharmacokinetics and low stability. To overcome these limitations, this study aimed to enhance the anticancer activity and stability of oleuropein and rutin by loading them into PEGylated Nano-phytosomes. The developed PEGylated Nano-phytosomes exhibited favorable characteristics in terms of size, charge, and stability. Notably, the anticolonic cancer activity of the Pegylated Nano-phytosomes loaded with oleuropein (IC50=0.14 µM) and rutin (IC50=0.44 µM) surpassed that of pure oleuropein and rutin alone. This outcome highlights the advantageous impact of Nano-phytosomes to augment the anticancer potential of oleuropein and rutin. These results present a promising pathway for the future development of oleuropein and rutin Nano-phytosomes as effective options for passive tumor-targeted therapy, given their improved stability and efficacy.


Asunto(s)
Neoplasias , Olea , Rutina/farmacología , Antioxidantes , Iridoides/farmacología , Glucósidos Iridoides , Polietilenglicoles , Hojas de la Planta , Extractos Vegetales/farmacología
20.
Med Oncol ; 40(8): 225, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405480

RESUMEN

Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, in this concise review, we intend to summarize exosomes components and isolation, exosome secretion, function, importance of exosomes in the progression of pancreatic cancer and exosomal miRNAs as possible pancreatic cancer biomarkers. Finally, the application potential of exosomes in the treatment of pancreatic cancer, which provides theoretical supports for using exosomes to serve precise tumor treatment in the clinic, will be discussed.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Pancreáticas , Humanos , Exosomas/genética , Neoplasias Pancreáticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...