Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Allergy ; 78(12): 3221-3234, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650248

RESUMEN

BACKGROUND: Major fish allergens, including parvalbumin (PV), are heat stable and can withstand extensive cooking processes. Thus, the management of fish allergy generally relies on complete avoidance. Fish-allergic patients may be advised to consume canned fish, as some fish-allergic individuals have reported tolerance to canned fish. However, the safety of consuming canned fish has not been evaluated with comprehensive immunological and molecular analysis of canned fish products. METHODS: We characterized the in vitro immunoreactivity of serum obtained from fish-allergic subjects to canned fish. Seventeen canned fish products (salmon n = 8; tuna n = 7; sardine n = 2) were assessed for the content and integrity of PV using allergen-specific antibodies. Subsequently, the sIgE binding of five selected products was evaluated for individual fish-allergic patients (n = 53). Finally, sIgE-binding proteins were identified by mass spectrometry. RESULTS: The canned fish showed a markedly reduced PV content and binding to PV-specific antibodies compared with conventionally cooked fish. However, PV and other heat-stable fish allergens, including tropomyosin and collagen, still maintained their sIgE-binding capacity. Of 53 patients, 66% showed sIgE binding to canned fish proteins. The canned sardine contained proteins bound to sIgE from 51% of patients, followed by canned salmon (43%-45%) and tuna (8%-17%). PV was the major allergen in canned salmon and sardine. Tropomyosin and/or collagen also showed sIgE binding. CONCLUSION: We showed that canned fish products may not be safe for all fish-allergic patients. Canned fish products should only be considered into the diet of individuals with fish allergy, after detailed evaluation which may include in vitro diagnostics to various heat-stable fish allergens and food challenge conducted in suitable environments.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Animales , Humanos , Tropomiosina , Peces , Anticuerpos , Salmón , Productos Pesqueros/efectos adversos , Parvalbúminas , Colágeno
3.
Pediatr Allergy Immunol ; 33(5): e13781, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35616897

RESUMEN

BACKGROUND: Clinical cross-reactivity between bony fish, cartilaginous fish, frog, and chicken muscle has previously been demonstrated in fish-allergic patients. In indicative studies, two reports of anaphylaxis following the consumption of crocodile meat and IgE-cross-binding were linked to the major fish allergen parvalbumin (PV). This study investigates IgE-binding proteins in crocodile meat with a focus on PV and their clinical relevance. METHODS: Proteins were extracted from muscle tissue of crocodile, three bony fish, and two cartilaginous fish. A cohort of fish-allergic pediatric patients (n = 77) underwent allergen skin prick testing (SPT) to three fish preparations (n = 77) and crocodile (n = 12). IgE-binding proteins were identified and quantified by SDS-PAGE, mass spectrometric analyses, and immunoblotting using commercial and in-house antibodies, as well as individual and pooled patients' serum. PV isoforms were purified or recombinantly expressed before immunological analyses, including human mast cell degranulation assay. RESULTS: Of the tissues analyzed, PV was most abundant in heated crocodile preparation, triggering an SPT of ≥3 mm in 8 of 12 (67%) fish-allergic patients. Seventy percent (31 of 44) of fish PV-sensitized patients demonstrated IgE-binding to crocodile PV. Crocodile ß-PV was the major IgE-binding protein but 20-fold less abundant than α-PV. Cellular reactivity was demonstrated for ß-PV and epitopes predicted, explaining frequent IgE-cross-binding of ß-PVs. Both PV isoforms are now registered as the first reptile allergens with the WHO/IUIS (ß-PV as Cro p 1 and α-PV as Cro p 2). CONCLUSION: Fish-allergic individuals may be at risk of an allergy to crocodile and should seek specialist advice before consuming crocodilian meat.


Asunto(s)
Caimanes y Cocodrilos , Hipersensibilidad a los Alimentos , Alérgenos , Animales , Niño , Reacciones Cruzadas , Peces , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Inmunoglobulina E , Parvalbúminas
4.
Foods ; 11(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35159555

RESUMEN

The Pacific oyster is a commercially important mollusc and, in contrast to most other shellfish species, frequently consumed without prior heat treatment. Oysters are rich in many nutrients but can also cause food allergy. Knowledge of their allergens and cross-reactivity remains very limited. These limitations make an optimal diagnosis of oyster allergy difficult, in particular to the Pacific oyster (Crassostrea gigas), the most cultivated and consumed oyster species worldwide. This study aimed to characterise IgE sensitisation profiles of 21 oyster-sensitised patients to raw and heated Pacific oyster extract using immunoblotting and advanced mass spectrometry, and to assess the relevance of recombinant oyster allergen for improved diagnosis. Tropomyosin was identified as the major allergen recognised by IgE from 18 of 21 oyster-sensitised patients and has been registered with the WHO/IUIS as the first oyster allergen (Cra g 1). The IgE-binding capacity of oyster-sensitised patients' IgE to purified natural and recombinant tropomyosin from oyster, prawn, and dust mite was compared using enzyme-linked immunosorbent assay. The degree of IgE binding varied between patients, indicating partial cross-sensitisation and/or co-sensitisation. Amino acid sequence alignment of tropomyosin from these three species revealed five regions that contain predicted IgE-binding epitopes, which are most likely responsible for this cross-reactivity. This study fully biochemically characterises the first and major oyster allergen Cra g 1 and demonstrates that the corresponding recombinant tropomyosin should be implemented in improved component-resolved diagnostics and guide future immunotherapy.

5.
Foods ; 10(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673192

RESUMEN

Despite recent technological advances, novel allergenic protein discovery is limited by their low abundance, often due to specific physical characteristics restricting their recovery during the extraction process from various allergen sources. In this study, eight different extraction buffers were compared for their ability to recover proteins from Pacific oyster (Crassostrea gigas). The protein composition was investigated using high resolution mass spectrometry. The antibody IgE-reactivity of each extract was determined using a pool of serum from five shellfish-allergic patients. Most of the investigated buffers showed good capacity to extract proteins from the Pacific oyster. In general, a higher concentration of proteins was recovered using high salt buffers or high pH buffers, subsequently revealing more IgE-reactive bands on immunoblotting. In contrast, low pH buffers resulted in a poor protein recovery and reduced IgE-reactivity. Discovery of additional IgE-reactive proteins in high salt buffers or high pH buffers was associated with an increase in allergen abundance in the extracts. In conclusion, increasing the ionic strength and pH of the buffer improves the solubility of allergenic proteins during the extraction process for oyster tissue. This strategy could also be applied for other difficult-to-extract allergen sources, thereby yielding an improved allergen panel for increased diagnostic efficiency.

6.
Front Allergy ; 2: 718824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35387003

RESUMEN

Introduction: Asthma and allergy occur frequently among seafood processing workers, with the highest prevalence seen in the crustacean processing industry. In this study we established for the first time the prevalence of allergic sensitization in the Norwegian king- and edible crab processing industry and characterized the IgE-reactive proteins. Materials and Methods: Two populations of crab processing workers participated; 119 king crab and 65 edible crab workers. The investigation included information on work tasks and health through a detailed questionnaire. Allergic sensitization was investigated by crab-specific IgE quantification and skin prick tests (SPT) to four in-house prepared crab extracts; raw meat, cooked meat, raw intestines and raw shell. Allergen-specific IgE binding patterns were analyzed by IgE immunoblotting to the four allergen extracts using worker serum samples. Total proteins in crab SPT extracts and immunoblot-based IgE binding proteins were identified by mass spectrometric analysis. Results: Positive SPTs were established in 17.5% of king- and 18.1% of edible crab workers, while elevated IgE to crab were demonstrated in 8.9% of king- and 12.2% of edible crab processing workers. There was no significant difference between the king and edible crab workers with respect to self-reported respiratory symptoms, elevated specific IgE to crab or SPT results. Individual workers exhibited differential IgE binding patterns to different crab extracts, with most frequent binding to tropomyosin and arginine kinase and two novel IgE binding proteins, hemocyanin and enolase, identified as king- and edible crab allergens. Conclusions: Occupational exposure to king- and edible crabs may frequently cause IgE mediated allergic sensitization. Future investigations addressing the diagnostic value of crab allergens including tropomyosin and arginine kinase and the less well-known IgE-binding proteins hemocyanin and enolase in a component-resolved diagnostic approach to crab allergy should be encouraged.

7.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375120

RESUMEN

Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.


Asunto(s)
Alérgenos/genética , Proteínas de Artrópodos/genética , Hipersensibilidad a los Alimentos/genética , Perfilación de la Expresión Génica/métodos , Penaeidae/genética , Transcriptoma/genética , Alérgenos/inmunología , Animales , Proteínas de Artrópodos/clasificación , Proteínas de Artrópodos/inmunología , Reacciones Cruzadas/inmunología , Evolución Molecular , Hipersensibilidad a los Alimentos/inmunología , Humanos , Penaeidae/clasificación , Penaeidae/inmunología , Filogenia , Alimentos Marinos/análisis , Especificidad de la Especie , Tropomiosina/genética , Tropomiosina/inmunología
8.
J Allergy Clin Immunol Pract ; 8(9): 3084-3092.e10, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32389794

RESUMEN

BACKGROUND: Fish collagen is widely used in medicine, cosmetics, and the food industry. However, its clinical relevance as an allergen is not fully appreciated. This is likely due to collagen insolubility in neutral aqueous solutions, leading to low abundance in commercially available in vitro and skin prick tests for fish allergy. OBJECTIVE: To investigate the relevance of fish collagen as an allergen in a large patient population (n = 101). METHODS: Acid-soluble collagen type I was extracted from muscle and skin of Atlantic salmon, barramundi, and yellowfin tuna. IgE binding to collagen was analyzed by ELISA for 101 fish-allergic patients. Collagen-sensitized patients' sera were tested for IgE binding to parvalbumin from the same fish species. IgE cross-linking was analyzed by rat basophil leukemia assay and basophil activation test. Protein identities were confirmed by mass spectrometry. RESULTS: Purified fish collagen contained type I α1 and α2 chains and their multimers. Twenty-one of 101 patients (21%) were sensitized to collagen. Eight collagen-sensitized patients demonstrated absence of parvalbumin-specific IgE to some fish species. Collagen induced functional IgE cross-linking, as shown by rat basophil leukemia assay performed using 6 patients' sera, and basophil activation test using fresh blood from 1 patient. Collagen type I α chains from barramundi and Atlantic salmon were registered at www.allergen.org as Lat c 6 and Sal s 6, respectively. CONCLUSIONS: IgE sensitization and IgE cross-linking capacity of fish collagen were demonstrated in fish-allergic patients. Inclusion of relevant collagen allergens in routine diagnosis is indicated to improve the capacity to accurately diagnose fish allergy.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Animales , Colágeno , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Inmunoglobulina E , Parvalbúminas
9.
Front Immunol ; 10: 2676, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803189

RESUMEN

Understanding and predicting an individual's clinical cross-reactivity to related allergens is a key to better management, treatment and progression of novel therapeutics for food allergy. In food allergy, clinical cross-reactivity is observed in patients reacting to unexpected allergen sources containing the same allergenic protein or antibody binding patches (epitopes), often resulting in severe allergic reactions. Shellfish allergy affects up to 2% of the world population and persists for life in most patients. The diagnosis of shellfish allergy is however often challenging due to reported clinical cross-reactivity to other invertebrates including mites and cockroaches. Prediction of cross-reactivity can be achieved utilizing an in-depth analysis of a few selected IgE-antibody binding epitopes. We combined available experimentally proven IgE-binding epitopes with informatics-based cross-reactivity prediction modeling to assist in the identification of clinical cross-reactive biomarkers on shellfish allergens. This knowledge can be translated into prevention and treatment of allergic diseases. To overcome the problem of predicting IgE cross-reactivity of shellfish allergens we developed an epitope conservation model using IgE binding epitopes available in the Immune Epitope Database and Analysis Resource (http://www.iedb.org/). We applied this method to a set of four different shrimp allergens, and successfully identified several non-cross-reactive as well as cross-reactive epitopes, which have been experimentally established to cross-react. Based on these findings we suggest that this method can be used for advanced component-resolved-diagnosis to identify patients sensitized to a specific shellfish group and distinguish from patients with extensive cross-reactivity to ingested and inhaled allergens from invertebrate sources.


Asunto(s)
Alérgenos/inmunología , Proteínas de Artrópodos/inmunología , Epítopos de Linfocito B/inmunología , Hipersensibilidad a los Alimentos/diagnóstico , Invertebrados , Mariscos , Alérgenos/genética , Secuencia de Aminoácidos , Animales , Arginina Quinasa/genética , Arginina Quinasa/inmunología , Proteínas de Artrópodos/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Reacciones Cruzadas , Epítopos de Linfocito B/genética , Hipersensibilidad a los Alimentos/inmunología , Humanos , Inmunoglobulina E/inmunología , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/inmunología , Tropomiosina/genética , Tropomiosina/inmunología
10.
Mol Immunol ; 112: 330-337, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31247376

RESUMEN

Shrimp is one of the predominant causes of food allergy among adults, often presenting with severe reactions. Current in vitro diagnostics are based on quantification of patient specific-IgE (sIgE) to shrimp extract. Tropomyosin is the known major shrimp allergen, but IgE sensitisation to other allergens is poorly characterised. In this study, the binding of IgE to various shrimp allergens, additional to tropomyosin, was investigated using sera from 21 subjects who had clinical reactions to one or more shellfish species. Total shrimp-sIgE was quantified using ImmunoCAP, while allergen-sIgEs were quantified using immunoblotting and mass spectrometry, and immuno-PCR to recombinant shrimp tropomyosin. Sixty-two percent of subjects (13/21) were positive to shrimp by ImmunoCAP. IgE from 43% of subjects (9/21) bound tropomyosin, while an additional 29% of subjects (6/21) demonstrated IgE-binding solely to other shrimp allergens, including sarcoplasmic calcium-binding protein, arginine kinase and hemocyanin. Furthermore, IgE sensitisation to other shrimp allergens was demonstrated in 50% of subjects (4/8) who were ImmunoCAP negative. The lack of standardised shrimp allergens and inadequacy of current extracts for shrimp allergy diagnosis is highlighted by this study. Comprehensive knowledge of less studied allergens and their inclusion in component-resolved diagnostics will improve diagnostic accuracy, benefitting the wider population suffering from shellfish allergy.


Asunto(s)
Alérgenos/inmunología , Artemia/inmunología , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/inmunología , Adulto , Animales , Arginina Quinasa/inmunología , Proteínas de Unión al Calcio/inmunología , Femenino , Hemocianinas/inmunología , Humanos , Inmunoglobulina E/inmunología , Masculino , Persona de Mediana Edad , Alimentos Marinos , Tropomiosina/inmunología , Adulto Joven
11.
Allergy ; 74(7): 1352-1363, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30762884

RESUMEN

BACKGROUND: Commercial allergen extracts for allergy skin prick testing (SPT) are widely used for diagnosing fish allergy. However, there is currently no regulatory requirement for standardization of protein and allergen content, potentially impacting the diagnostic reliability of SPTs. We therefore sought to analyse commercial fish extracts for the presence and concentration of fish proteins and in vitro IgE reactivity using serum from fish-allergic patients. METHODS: Twenty-six commercial fish extracts from five different manufacturers were examined. The protein concentrations were determined, protein compositions analysed by mass spectrometry, followed by SDS-PAGE and subsequent immunoblotting with antibodies detecting 4 fish allergens (parvalbumin, tropomyosin, aldolase and collagen). IgE-reactive proteins were identified using serum from 16 children with confirmed IgE-mediated fish allergy, with focus on cod, tuna and salmon extracts. RESULTS: The total protein, allergen concentration and IgE reactivity of the commercial extracts varied over 10-fold between different manufacturers and fish species. The major fish allergen parvalbumin was not detected by immunoblotting in 6/26 extracts. In 7/12 extracts, five known fish allergens were detected by mass spectrometry. For cod and tuna, almost 70% of patients demonstrated the strongest IgE reactivity to collagen, tropomyosin, aldolase A or ß-enolase but not parvalbumin. CONCLUSIONS: Commercial fish extracts often contain insufficient amounts of important allergens including parvalbumin and collagen, resulting in low IgE reactivity. A comprehensive proteomic approach for the evaluation of SPT extracts for their utility in allergy diagnostics is presented. There is an urgent need for standardized allergen extracts, which will improve the diagnosis and management of fish allergy.


Asunto(s)
Alérgenos/inmunología , Variación Antigénica/inmunología , Productos Pesqueros/efectos adversos , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/inmunología , Pruebas Cutáneas , Adolescente , Animales , Anticuerpos/inmunología , Niño , Preescolar , Femenino , Peces/inmunología , Humanos , Inmunoglobulina E/inmunología , Lactante , Masculino , Espectrometría de Masas
12.
Mol Immunol ; 100: 28-57, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29858102

RESUMEN

Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.


Asunto(s)
Alérgenos/inmunología , Peces/inmunología , Hipersensibilidad a los Alimentos/inmunología , Animales , Reacciones Cruzadas/inmunología , Humanos , Alimentos Marinos , Mariscos
13.
Mol Nutr Food Res ; 62(14): e1800148, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29756679

RESUMEN

SCOPE: Shellfish allergy is an increasing global health priority, frequently affecting adults. Molluscs are an important shellfish group causing food allergy but knowledge of their allergens and cross-reactivity is limited. Optimal diagnosis of mollusc allergy enabling accurate advice on food avoidance is difficult. Allergens of four frequently ingested Asia-Pacific molluscs are characterized: Sydney rock oyster (Saccostrea glomerata), blue mussel (Mytilus edulis), saucer scallop (Amusium balloti), and southern calamari (Sepioteuthis australis), examining cross-reactivity between species and with blue swimmer crab tropomyosin, Por p 1. METHODS AND RESULTS: IgE ELISA showed that cooking increased IgE reactivity of mollusc extracts and basophil activation confirmed biologically relevant IgE reactivity. Immunoblotting demonstrated strong IgE reactivity of several proteins including one corresponding to heat-stable tropomyosin in all species (37-40 kDa). IgE-reactive Sydney rock oyster proteins were identified by mass spectrometry, and the novel major oyster tropomyosin allergen was cloned, sequenced, and designated Sac g 1 by the IUIS. Oyster extracts showed highest IgE cross-reactivity with other molluscs, while mussel cross-reactivity was weakest. Inhibition immunoblotting demonstrated high cross-reactivity between tropomyosins of mollusc and crustacean species. CONCLUSION: These findings inform novel approaches for reliable diagnosis and improved management of mollusc allergy.

15.
Water Res ; 71: 171-86, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25616114

RESUMEN

Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules.


Asunto(s)
Incrustaciones Biológicas , Filtración/instrumentación , Membranas Artificiales , Purificación del Agua/instrumentación , Biopelículas , Escherichia coli , Filtración/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato , Polipropilenos/química , Purificación del Agua/métodos
16.
Biofouling ; 31(1): 123-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25629533

RESUMEN

The antifouling (AF) properties of oligo(lactose)-based self-assembled monolayers (SAMs), using four different proteins, zoospores of the green alga Ulva linza and cells of the diatom Navicula incerta, were investigated. The SAM-forming alkylthiols, which contained 1, 2 or 3 lactose units, showed significant variation in AF properties, with no differences in wettability. Non-specific adsorption of albumin and pepsin was low on all surfaces. Adsorption of lysozyme and fibrinogen decreased with increasing number of lactose units in the SAM, in agreement with the generally observed phenomenon that thicker hydrated layers provide higher barriers to protein adsorption. Settlement of spores of U. linza followed an opposite trend, being greater on the bulkier, more hydrated SAMs. These SAMs are more ordered for the larger saccharide units, and it is therefore hypothesized that the degree of order, and differences in crystallinity or stiffness between the surfaces, is an important parameter regulating spore settlement on these surfaces.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Diatomeas/efectos de los fármacos , Lactosa/química , Ulva/efectos de los fármacos , Adsorción , Diatomeas/fisiología , Estructura Molecular , Proteínas/química , Propiedades de Superficie , Ulva/fisiología , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...