Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681410

RESUMEN

Pulmonary hypertension (PH) is a life-threatening disease characterized by a progressive narrowing of pulmonary arterioles. Although VEGF is highly expressed in lung of patients with PH and in animal PH models, the involvement of angiogenesis remains elusive. To clarify the pathophysiological function of angiogenesis in PH, we compared the angiogenic response in hypoxia (Hx) and SU5416 (a VEGFR2 inhibitor) plus Hx (SuHx) mouse PH models using 3D imaging. The 3D imaging analysis revealed an angiogenic response in the lung of the Hx-PH, but not of the severer SuHx-PH model. Selective VEGFR2 inhibition with cabozantinib plus Hx in mice also suppressed angiogenic response and exacerbated Hx-PH to the same extent as SuHx. Expression of endothelial proliferator-activated receptor γ coactivator 1α (PGC-1α) increased along with angiogenesis in lung of Hx-PH but not SuHx mice. In pulmonary endothelial cell-specific Ppargc1a-KO mice, the Hx-induced angiogenesis was suppressed, and PH was exacerbated along with increased oxidative stress, cellular senescence, and DNA damage. By contrast, treatment with baicalin, a flavonoid enhancing PGC-1α activity in endothelial cells, ameliorated Hx-PH with increased Vegfa expression and angiogenesis. Pulmonary endothelial PGC-1α-mediated angiogenesis is essential for adaptive responses to Hx and might represent a potential therapeutic target for PH.


Asunto(s)
Hipertensión Pulmonar , Animales , Ratones , Senescencia Celular , Modelos Animales de Enfermedad , Daño del ADN , Células Endoteliales , Hipertensión Pulmonar/prevención & control , Hipoxia
2.
Clin Transplant ; 37(12): e15107, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37615650

RESUMEN

AIM: We investigated the effects of pre-transplantation renal dysfunction under left ventricular assisted device (LVAD) support on post-transplantation cardiac function, and patient prognosis after heart transplantation (HTx). METHOD: All patients who were bridged by LVAD and underwent HTx at our hospital between 2007 and 2022 were included in this study. Patients were classified into two groups based on estimated glomerular filtration rate (eGFR) before HTx: renal dysfunction (RD) group (eGFR < 60 mL/min/1.73 m2 ) and non-renal dysfunction (NRD) group. RESULT: A total of 132 patients were analyzed, of whom 48 were classified into the RD group and 84 into the NRD group (RD group, 47.9 ± 10.1 years; NRD group, 38.4 ± 11.9 years, p < .0001). Under LVAD support before HTx, the RD group tended to have a history of right ventricular failure (RD group, nine (19%); NRD group, seven (8%); p = .098). After HTx, the echocardiographic parameters did not differ between the two groups in the long term. Furthermore, more concise hemodynamic parameters, exemplified by right heart catheterization, were not significantly different between the two groups. Regarding graft rejection, no significant differences were found in acute cellular rejection and cardiac allograft vasculopathy following HTx. In contrast, patients with RD before HTx had significantly increased mortality in the chronic phase after HTx and initiation of maintenance dialysis, without any overt changes in cardiac function. CONCLUSION: Pre-transplantation renal dysfunction under LVAD support significantly affected clinical course after HTx without any overt changes in graft cardiac function.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Corazón , Corazón Auxiliar , Enfermedades Renales , Humanos , Corazón Auxiliar/efectos adversos , Resultado del Tratamiento , Trasplante de Corazón/efectos adversos , Riñón
3.
J Vis Exp ; (197)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37548449

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a condition characterized by diastolic dysfunction and exercise intolerance. While exercise-stressed hemodynamic tests or MRI can be used to detect diastolic dysfunction and diagnose HFpEF in humans, such modalities are limited in basic research using mouse models. A treadmill exercise test is commonly used for this purpose in mice, but its results can be influenced by body weight, skeletal muscle strength, and mental state. Here, we describe an atrial-pacing protocol to detect heart rate (HR)-dependent changes in diastolic performance and validate its usefulness in a mouse model of HFpEF. The method involves anesthetizing, intubating, and performing pressure-volume (PV) loop analysis concomitant with atrial pacing. In this work, a conductance catheter was inserted via a left ventricular apical approach, and an atrial pacing catheter was placed in the esophagus. Baseline PV loops were collected before the HR was slowed with ivabradine. PV loops were collected and analyzed at HR increments ranging from 400 bpm to 700 bpm via atrial pacing. Using this protocol, we clearly demonstrated HR-dependent diastolic impairment in a metabolically induced HFpEF model. Both the relaxation time constant (Tau) and the end-diastolic pressure-volume relationship (EDPVR) worsened as the HR increased compared to control mice. In conclusion, this atrial pacing-controlled protocol is useful for detecting HR-dependent cardiac dysfunctions. It provides a new way to study the underlying mechanisms of diastolic dysfunction in HFpEF mouse models and may help develop new treatments for this condition.


Asunto(s)
Fibrilación Atrial , Cardiomiopatías , Insuficiencia Cardíaca , Animales , Ratones , Diástole/fisiología , Frecuencia Cardíaca , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología
4.
Physiol Rep ; 11(13): e15751, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37394657

RESUMEN

Diastolic stiffness coefficient (ß) and end-diastolic elastance (Eed) are ventricular-specific diastolic parameters. However, the diastolic function of right ventricle had not been investigated sufficiently due to the lack of established evaluation method. We evaluated the validity of these parameters calculated using only data of right heart catheterization (RHC) and assessed it in patients with restrictive cardiomyopathy (RCM) and cardiac amyloidosis. We retrospectively analyzed 46 patients with heart failure who underwent RHC within 10 days of cardiac magnetic resonance (CMR). Right ventricular end-diastolic volume and end-systolic volume were calculated using only RHC data, which were found to be finely correlated with those obtained from CMR. ß and Eed calculated by this method were also significantly correlated with those derived from conventional method using CMR. By this method, ß and Eed were significantly higher in RCM with amyloidosis group than dilated cardiomyopathy group. In addition, the ß and Eed calculated by our method were finely correlated with E/A ratio on echocardiography. We established an easy method to estimate ß and Eed of right ventricle from only RHC. The method finely demonstrated right ventricular diastolic dysfunction in patients with RCM and amyloidosis.


Asunto(s)
Imagen por Resonancia Magnética , Disfunción Ventricular Derecha , Humanos , Estudios Retrospectivos , Diástole , Ecocardiografía , Cateterismo Cardíaco , Volumen Sistólico , Función Ventricular Derecha , Disfunción Ventricular Derecha/diagnóstico por imagen
5.
JACC Basic Transl Sci ; 8(1): 55-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36777173

RESUMEN

Using the Cre-loxP system, we generated the first mouse model in which estrogen receptor-α non-nuclear signaling was inactivated in endothelial cells. Estrogen protection against mechanical vascular injury was impaired in this model. This result indicates the pivotal role of endothelial estrogen receptor-α non-nuclear signaling in the vasculoprotective effects of estrogen.

6.
J Cardiol ; 82(1): 69-75, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36682710

RESUMEN

BACKGROUND: Acute vasoreactivity test with inhaled nitric oxide (NO) is performed during diagnostic right heart catheterization (RHC) to identify patients with pulmonary arterial hypertension (PAH) who respond to calcium channel blockers. Our purpose was to investigate the prognostic importance of follow-up vasoreactivity test after treatment. METHODS: We retrospectively analyzed 36 PAH patients (mean age, 47 years; 61 % treatment-naïve), who underwent diagnostic and follow-up RHC and vasoreactivity tests at our center. The primary outcome was all-cause mortality. RESULTS: The median time between baseline and follow-up RHC was 9.7 months. Absolute change in mean pulmonary arterial pressure (ΔmPAP) during NO challenge was less pronounced after treatment, but there was great variability among patients. Overall cohort was dichotomized into two groups: preserved vasoreactivity (ΔmPAP ≤ -1 mmHg) and less vasoreactivity (ΔmPAP ≥0 mmHg) at follow-up RHC. Less vasoreactivity group had higher usage rate of endothelin receptor antagonists and parenteral prostacyclin analogues. During a median observation period of 6.3 years after follow-up RHC, 7 patients died, of which 6 showed less vasoreactivity at follow-up. Absolute ΔmPAP ≥0 at follow-up RHC was associated with all-cause mortality in univariable Cox regression analysis (hazard ratio, 8.728; 95 % confidence interval, 1.045-72.887; p = 0.045), whereas other hemodynamic parameters were not. Absolute ΔmPAP ≥0 at follow-up RHC was associated with all-cause mortality in multivariable Cox analysis adjusted for age and known PAH prognostic factors (HR, 12.814; 95 % CI, 1.088-150.891; p = 0.043). Kaplan-Meier survival analysis revealed a significantly worse survival of less vasoreactivity group compared to preserved vasoreactivity group (log-rank test, p = 0.016). CONCLUSIONS: Follow-up vasoreactivity test after treatment could contribute to the detection of high-risk subgroups who might need careful monitoring and referral for lung transplantation.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Persona de Mediana Edad , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Pronóstico , Estudios Retrospectivos , Estudios de Seguimiento , Cateterismo Cardíaco/efectos adversos
7.
Circulation ; 147(4): 338-355, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36440584

RESUMEN

BACKGROUND: Mechanical stress on the heart, such as high blood pressure, initiates inflammation and causes hypertrophic heart disease. However, the regulatory mechanism of inflammation and its role in the stressed heart remain unclear. IL-1ß (interleukin-1ß) is a proinflammatory cytokine that causes cardiac hypertrophy and heart failure. Here, we show that neural signals activate the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3) inflammasome for IL-1ß production to induce adaptive hypertrophy in the stressed heart. METHODS: C57BL/6 mice, knockout mouse strains for NLRP3 and P2RX7 (P2X purinoceptor 7), and adrenergic neuron-specific knockout mice for SLC17A9, a secretory vesicle protein responsible for the storage and release of ATP, were used for analysis. Pressure overload was induced by transverse aortic constriction. Various animal models were used, including pharmacological treatment with apyrase, lipopolysaccharide, 2'(3')-O-(4-benzoylbenzoyl)-ATP, MCC950, anti-IL-1ß antibodies, clonidine, pseudoephedrine, isoproterenol, and bisoprolol, left stellate ganglionectomy, and ablation of cardiac afferent nerves with capsaicin. Cardiac function and morphology, gene expression, myocardial IL-1ß and caspase-1 activity, and extracellular ATP level were assessed. In vitro experiments were performed using primary cardiomyocytes and fibroblasts from rat neonates and human microvascular endothelial cell line. Cell surface area and proliferation were assessed. RESULTS: Genetic disruption of NLRP3 resulted in significant loss of IL-1ß production, cardiac hypertrophy, and contractile function during pressure overload. A bone marrow transplantation experiment revealed an essential role of NLRP3 in cardiac nonimmune cells in myocardial IL-1ß production and cardiac phenotype. Pharmacological depletion of extracellular ATP or genetic disruption of the P2X7 receptor suppressed myocardial NLRP3 inflammasome activity during pressure overload, indicating an important role of ATP/P2X7 axis in cardiac inflammation and hypertrophy. Extracellular ATP induced hypertrophic changes of cardiac cells in an NLRP3- and IL-1ß-dependent manner in vitro. Manipulation of the sympathetic nervous system suggested sympathetic efferent nerves as the main source of extracellular ATP. Depletion of ATP release from sympathetic efferent nerves, ablation of cardiac afferent nerves, or a lipophilic ß-blocker reduced cardiac extracellular ATP level, and inhibited NLRP3 inflammasome activation, IL-1ß production, and adaptive cardiac hypertrophy during pressure overload. CONCLUSIONS: Cardiac inflammation and hypertrophy are regulated by heart-brain interaction. Controlling neural signals might be important for the treatment of hypertensive heart disease.


Asunto(s)
Inflamasomas , Proteínas de Transporte de Nucleótidos , Ratones , Ratas , Humanos , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Inflamación , Arritmias Cardíacas , Encéfalo/metabolismo , Cardiomegalia , Adenosina Trifosfato/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo
8.
Biochem Biophys Res Commun ; 637: 247-253, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36410273

RESUMEN

Dopamine D1 receptor (D1R), coded by the Drd1 gene, is induced in cardiomyocytes of failing hearts, triggering heart failure-associated ventricular arrhythmia, and therefore could be a potential therapeutic target for chronic heart failure. The regulation of D1R expression, however, is not fully understood. Here, we explored the molecular mechanism by which cardiomyocyte D1R is induced in failing hearts. We performed motif analysis for the promoter region of the Drd1 gene using the transcription factor affinity prediction (TRAP) method and identified nuclear factor-kappa B (NF-κB) as a candidate transcriptional factor regulating the expression of the Drd1 gene. We next employed murine models of heart failure from chronic pressure overload by transverse aortic constriction (TAC), and assessed myocardial Drd1 expression levels and NF-κB activity, as well as endoplasmic reticulum (ER) stress, which has been implicated in the pathogenesis of heart failure. Drd1 induction in TAC hearts was dependent on the severity of heart failure, and was associated with NF-κB activation and ER stress, as assessed by p65 phosphorylation and the expression of ER stress-related genes, respectively. We further tested if Drd1 was induced by ER stress via NF-κB activation in cultured neonatal rat ventricular myocytes. Tunicamycin activated NF-κB pathway in an ER stress-dependent manner and increased Drd1 expression. Importantly, inhibition of NF-κB pathway by pretreatment with Bay11-7082 completely suppressed the tunicamycin-induced upregulation of Drd1, suggesting that NF-κB activation is essential to this regulation. Our study demonstrates the pivotal role for the ER stress-induced NF-κB activation in the induction of D1R in cardiomyocytes. Intervention of this pathway might be a potential new therapeutic strategy for heart failure-associated ventricular arrhythmia.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Ratas , Animales , Ratones , Miocitos Cardíacos , Regulación hacia Arriba , FN-kappa B , Factor B del Complemento , Estrés del Retículo Endoplásmico , Tunicamicina , Receptores de Dopamina D1/genética , Insuficiencia Cardíaca/genética , Factores de Transcripción , Transducción de Señal
9.
Nat Commun ; 13(1): 5117, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071032

RESUMEN

Although inflammation plays critical roles in the development of atherosclerosis, its regulatory mechanisms remain incompletely understood. Perivascular adipose tissue (PVAT) has been reported to undergo inflammatory changes in response to vascular injury. Here, we show that vascular injury induces the beiging (brown adipose tissue-like phenotype change) of PVAT, which fine-tunes inflammatory response and thus vascular remodeling as a protective mechanism. In a mouse model of endovascular injury, macrophages accumulate in PVAT, causing beiging phenotype change. Inhibition of PVAT beiging by genetically silencing PRDM16, a key regulator to beiging, exacerbates inflammation and vascular remodeling following injury. Conversely, activation of PVAT beiging attenuates inflammation and pathological vascular remodeling. Single-cell RNA sequencing reveals that beige adipocytes abundantly express neuregulin 4 (Nrg4) which critically regulate alternative macrophage activation. Importantly, significant beiging is observed in the diseased aortic PVAT in patients with acute aortic dissection. Taken together, vascular injury induces the beiging of adjacent PVAT with macrophage accumulation, where NRG4 secreted from the beige PVAT facilitates alternative activation of macrophages, leading to the resolution of vascular inflammation. Our study demonstrates the pivotal roles of PVAT in vascular inflammation and remodeling and will open a new avenue for treating atherosclerosis.


Asunto(s)
Aterosclerosis , Lesiones del Sistema Vascular , Tejido Adiposo Pardo/patología , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Inflamación/patología , Ratones , Remodelación Vascular , Lesiones del Sistema Vascular/patología
10.
Am J Physiol Heart Circ Physiol ; 323(3): H523-H527, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35960633

RESUMEN

Heart failure with preserved ejection fraction (HFpEF), characterized by diastolic dysfunction and insufficient exercise capacity, is a growing health problem worldwide. One major difficulty with experimental research on HFpEF is the lack of methods to consistently detect diastolic dysfunction in mouse models. We developed a pacing-controlled pressure-volume (PV) loop protocol for the assessment of diastolic function at different heart rates in mice and tested if the protocol could detect diastolic dysfunction specific to a HFpEF model. A HFpEF model was generated by high-fat diet (HFD) feeding with concomitant NG-nitro-l-arginine methyl ester administration, and a pressure-overload hypertrophy (PO) model was produced by surgical constriction of the transverse aorta (TAC). Heart rate (HR) was slowed below 400 beats/min by intraperitoneal injection of ivabradine. PV loop data were acquired and analyzed at HR incrementing from 400 to 700 beats/min via atrial pacing using a miniature pacing catheter inserted into the esophagus, and comparisons were made among control, HFpEF, and PO mice. At baseline without pacing, no diastolic abnormalities were detected in either PO or HFpEF models. Frequency-diastolic relations, however, revealed the significant diastolic impairment specific to the HFpEF model; both relaxation time constant (Tau) and end-diastolic pressure-volume relationship (EDPVR) were worsened as heart rate increased. Peak positive first derivative of left ventricular pressure (dP/dtmax) was significantly lower in HFpEF versus controls only at a high HR of 700 beats/min. A pacing-controlled protocol would be a feasible and potent method to detect diastolic dysfunction specific to a mouse HFpEF model.NEW & NOTEWORTHY We developed a pacing-controlled PV loop protocol for the assessment of diastolic function at different heart rates in mice, which is a feasible and potent method for the characterization of diastolic dysfunction in a murine HFpEF model whose diastolic dysfunction might be difficult to be detected under resting conditions without pacing.


Asunto(s)
Insuficiencia Cardíaca , Animales , Diástole/fisiología , Insuficiencia Cardíaca/etiología , Frecuencia Cardíaca , Ivabradina , Ratones , Volumen Sistólico/fisiología , Función Ventricular Izquierda
11.
Front Pharmacol ; 13: 792798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479330

RESUMEN

Cyclic guanosine monophosphate (cGMP), produced by guanylate cyclase (GC), activates protein kinase G (PKG) and regulates cardiac remodeling. cGMP/PKG signal is activated by two intrinsic pathways: nitric oxide (NO)-soluble GC and natriuretic peptide (NP)-particulate GC (pGC) pathways. Activation of these pathways has emerged as a potent therapeutic strategy to treat patients with heart failure, given cGMP-PKG signaling is impaired in heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). Large scale clinical trials in patients with HFrEF have shown positive results with agents that activate cGMP-PKG pathways. In patients with HFpEF, however, benefits were observed only in a subgroup of patients. Further investigation for cGMP-PKG pathway is needed to develop better targeting strategies for HFpEF. This review outlines cGMP-PKG pathway and its modulation in heart failure.

13.
Front Physiol ; 12: 738218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650448

RESUMEN

Great progress has been made in the understanding of the pathophysiology of cardiovascular diseases (CVDs), and this has improved the prevention and prognosis of CVDs. However, while sex differences in CVDs have been well documented and studied for decades, their full extent remains unclear. Results of the latest clinical studies provide strong evidence of sex differences in the efficacy of drug treatment for heart failure, thereby possibly providing new mechanistic insights into sex differences in CVDs. In this review, we discuss the significance of sex differences, as rediscovered by recent studies, in the pathogenesis of CVDs. First, we provide an overview of the results of clinical trials to date regarding sex differences and hormone replacement therapy. Then, we discuss the role of sex differences in the maintenance and disruption of cardiovascular tissue homeostasis.

14.
Sci Rep ; 11(1): 15091, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34302012

RESUMEN

Although chronic heart failure is clinically associated with acute kidney injury (AKI), the precise mechanism that connects kidney and heart remains unknown. Here, we elucidate the effect of pre-existing heart failure with reduced ejection fraction (HFrEF) on kidney via sympathetic activity, using the combining models of transverse aortic constriction (TAC) and unilateral renal ischemia reperfusion (IR). The evaluation of acute (24 h) and chronic (2 weeks) phases of renal injury following IR 8 weeks after TAC in C57BL/6 mice revealed that the development of renal fibrosis in chronic phase was significantly attenuated in TAC mice, but not in non-TAC mice, whereas no impact of pre-existing heart failure was observed in acute phase of renal IR. Expression of transforming growth factor-ß, monocyte chemoattractant protein-1, and macrophage infiltration were significantly reduced in TAC mice. Lastly, to investigate the effect of sympathetic nerve activity, we performed renal sympathetic denervation two days prior to renal IR, which abrogated attenuation of renal fibrosis in TAC mice. Collectively, we demonstrate the protective effect of pre-existing HFrEF on long-term renal ischemic injury. Renal sympathetic nerve may contribute to this protection; however, further studies are needed to fully clarify the comprehensive mechanisms associated with attenuated renal fibrosis and pre-existing HFrEF.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Fibrosis/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Isquemia/fisiopatología , Riñón/fisiopatología , Daño por Reperfusión/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Reperfusión/métodos , Simpatectomía
15.
J Intensive Care ; 5: 61, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29142756

RESUMEN

BACKGROUND: Central venous oxygen saturation (ScvO2) reflects the balance of oxygen delivery and consumption. Low ScvO2 indicates the presence of inadequate oxygen delivery, while high ScvO2 indicates reduced oxygen consumption and is sometimes associated with a high mortality rate in critically ill patients from dysoxia. Thiamine is an essential cofactor in cellular aerobic metabolism. Thiamine deficiency is more prevalent than was previously thought, and underlies severe conditions in critically ill patients. However, currently, there is no rapid diagnostic test for thiamine deficiency. Considering oxygen flux, high ScvO2 might be associated with thiamine deficiency. CASE PRESENTATION: A 70-year-old man admitted to the hospital with chief complaint of malaise and edema. He was diagnosed with heart failure with preserved ejection function and was treated with loop diuretics, which resulted in shock. Venoarterial extracorporeal membrane oxygenation and intra-aortic balloon pumping was indicated. The right heart catheter showed high ScvO2, normal cardiac output, and low systemic vascular resistance. Thiamine deficiency was suspected and we started the thiamine infusion. His hemodynamic status improved after thiamine replacement. After his recovery, it was discovered that he had a 1-month history of anorexia and thiamine deficiency. His final diagnosis was beriberi. CONCLUSIONS: The current case showed the relation between thiamine deficiency and high ScvO2. A literature review also suggested that thiamine deficiency is associated with high ScvO2. Thiamine deficiency causes impaired tissue oxygen extraction, which could lead to high ScvO2. In this context, high ScvO2 might serve as a predictor of thiamine deficiency in critically ill patients.

16.
Int Heart J ; 58(5): 816-819, 2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-28966329

RESUMEN

Ebstein's anomaly is a rare congenital heart disease characterized by apical displacement of the septal and posterior tricuspid valve leaflets. It is often complicated with left ventricular (LV) dysfunction as well as right-sided abnormalities. On the other hand, in the presence of LV dysfunction, right ventricular pacing is likely to aggravate the diseased LV function, which is termed pacemaker-induced cardiomyopathy. Thus, deteriorating effects of RV pacing on cardiac function might be enhanced and result in pacemaker-induced cardiomyopathy in patients with Ebstein's anomaly, even if they have preserved LVEF. Cardiac resynchronization therapy (CRT) is effective for the treatment of pacemaker-induced cardiomyopathy, and we present the first case of effect of CRT on pacemaker-induced cardiomyopathy associated with Ebstein's anomaly.


Asunto(s)
Estimulación Cardíaca Artificial/efectos adversos , Desfibriladores Implantables , Anomalía de Ebstein/terapia , Ventrículos Cardíacos/fisiopatología , Disfunción Ventricular Izquierda/terapia , Función Ventricular Izquierda/fisiología , Anciano , Estimulación Cardíaca Artificial/métodos , Cefalosporinas , Ecocardiografía , Electrocardiografía , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...