Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 106(49): 20717-22, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19926848

RESUMEN

Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TRbeta) vs. TRalpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TRbeta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331beta) in the TRbeta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3'-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TRbeta selectivity. TR x-ray structures reveal better fit of ligand with the TRalpha LBC. The TRbeta LBC, however, expands relative to TRalpha in the presence of Triac (549 A(3) vs. 461 A(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TRbeta and permits greater flexibility of the Triac carboxylate group in TRbeta than in TRalpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TRbeta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.


Asunto(s)
Entropía , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Sitios de Unión , Humanos , Enlace de Hidrógeno , Ligandos , Simulación de Dinámica Molecular , Docilidad , Electricidad Estática , Termodinámica , Triyodotironina/química , Triyodotironina/metabolismo , Agua
2.
BMC Struct Biol ; 8: 8, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18237438

RESUMEN

BACKGROUND: Thyroid receptors, TRalpha and TRbeta, are involved in important physiological functions such as metabolism, cholesterol level and heart activities. Whereas metabolism increase and cholesterol level lowering could be achieved by TRbeta isoform activation, TRalpha activation affects heart rates. Therefore, beta-selective thyromimetics have been developed as promising drug-candidates for treatment of obesity and elevated cholesterol level. GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)-phenoxy acetic acid] has ability to lower LDL cholesterol with 600- to 1400-fold more potency and approximately two- to threefold more efficacy than atorvastatin (Lipitor(c)) in studies in rats, mice and monkeys. RESULTS: To investigate GC-1 specificity, we solved crystal structures and performed molecular dynamics simulations of both isoforms complexed with GC-1. Crystal structures reveal that, in TRalpha Arg228 is observed in multiple conformations, an effect triggered by the differences in the interactions between GC-1 and Ser277 or the corresponding asparagine (Asn331) of TRbeta. The corresponding Arg282 of TRbeta is observed in only one single stable conformation, interacting effectively with the ligand. Molecular dynamics support this model: our simulations show that the multiple conformations can be observed for the Arg228 in TRalpha, in which the ligand interacts either strongly with the ligand or with the Ser277 residue. In contrast, a single stable Arg282 conformation is observed for TRbeta, in which it strongly interacts with both GC-1 and the Asn331. CONCLUSION: Our analysis suggests that the key factors for GC-1 selectivity are the presence of an oxyacetic acid ester oxygen and the absence of the amino group relative to T3. These results shed light into the beta-selectivity of GC-1 and may assist the development of new compounds with potential as drug candidates to the treatment of hypercholesterolemia and obesity.


Asunto(s)
Acetatos/química , Fenoles/química , Receptores alfa de Hormona Tiroidea/química , Receptores beta de Hormona Tiroidea/química , Acetatos/metabolismo , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Células HeLa , Humanos , Ligandos , Modelos Biológicos , Fenoles/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo
3.
J Mol Biol ; 360(3): 586-98, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16781732

RESUMEN

The thyroid hormone receptor (TR) D-domain links the ligand-binding domain (LBD, EF-domain) to the DNA-binding domain (DBD, C-domain), but its structure, and even its existence as a functional unit, are controversial. The D domain is poorly conserved throughout the nuclear receptor family and was originally proposed to comprise an unfolded hinge that facilitates rotation between the LBD and the DBD. Previous TR LBD structures, however, have indicated that the true unstructured region is three to six amino acid residues long and that the D-domain N terminus folds into a short amphipathic alpha-helix (H0) contiguous with the DBD and that the C terminus of the D-domain comprises H1 and H2 of the LBD. Here, we solve structures of TR-LBDs in different crystal forms and show that the N terminus of the TRalpha D-domain can adopt two structures; it can either fold into an amphipathic helix that resembles TRbeta H0 or form an unstructured loop. H0 formation requires contacts with the AF-2 coactivator-binding groove of the neighboring TR LBD, which binds H0 sequences that resemble coactivator LXXLL motifs. Structural analysis of a liganded TR LBD with small angle X-ray scattering (SAXS) suggests that AF-2/H0 interactions mediate dimerization of this protein in solution. We propose that the TR D-domain has the potential to form functionally important extensions of the DBD and LBD or unfold to permit TRs to adapt to different DNA response elements. We also show that mutations of the D domain LXXLL-like motif indeed selectively inhibit TR interactions with an inverted palindromic response element (F2) in vitro and TR activity at this response element in cell-based transfection experiments.


Asunto(s)
Receptores alfa de Hormona Tiroidea/química , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/química , Receptores beta de Hormona Tiroidea/metabolismo , Secuencias de Aminoácidos , ADN/metabolismo , Dimerización , Células HeLa , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Elementos de Respuesta/genética , Soluciones , Relación Estructura-Actividad , Triyodotironina/metabolismo , Células Tumorales Cultivadas , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...