Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Sci Rep ; 14(1): 15053, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956389

RESUMEN

Targeting intracellular inhibiting proteins has been revealed to be a promising strategy to improve CD8+ T cell anti-tumor efficacy. Here, we are focusing on intracellular inhibiting proteins specific to TCR signaling: DOK1 and DOK2 expressed in T cells. We hypothesized that depletion of intracellular inhibition checkpoint DOK1 and DOK2 could improve CD8+ T-cell based cancer therapies. To evaluate the role of DOK1 and DOK2 depletion in physiology and effector function of CD8+ T lymphocytes and in cancer progression, we established a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) in WT and Dok1/Dok2 DKO (double KO) mice. We showed that both DOK1 and DOK2 depletion in CD8+ T cells after an in vitro pre-stimulation induced a higher percentage of effector memory T cells as well as an up regulation of TCR signaling cascade- induced by CD3 mAbs, including the increased levels of pAKT and pERK, two major phosphoproteins involved in T cell functions. Interestingly, this improved TCR signaling was not observed in naïve CD8+ T cells. Despite this enhanced TCR signaling essentially shown upon stimulation via CD3 mAbs, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxic capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. Indeed, our results allow us to conclude that DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos T CD8-positivos , Proteínas de Unión al ADN , Memoria Inmunológica , Ratones Noqueados , Fosfoproteínas , Proteínas de Unión al ARN , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Línea Celular Tumoral , Ratones Transgénicos
2.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37217244

RESUMEN

Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/metabolismo , Linfocitos T
3.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37230538

RESUMEN

BACKGROUND: Tumor necrosis factor superfamily member 14 (TNFRSF14)/herpes virus entry mediator (HVEM) is the ligand for B and T lymphocyte attenuator (BTLA) and CD160-negative immune co-signaling molecules as well as viral proteins. Its expression is dysregulated with an overexpression in tumors and a connection with tumors of adverse prognosis. METHODS: We developed C57BL/6 mouse models co-expressing human (hu)BTLA and huHVEM as well as antagonistic monoclonal antibodies (mAbs) that completely prevent the interactions of HVEM with its ligands. RESULTS: Here, we show that the anti-HVEM18-10 mAb increases primary human αß-T cells activity alone (CIS-activity) or in the presence of HVEM-expressing lung or colorectal cancer cells in vitro (TRANS-activity). Anti-HVEM18-10 synergizes with antiprogrammed death-ligand 1 (anti-PD-L1) mAb to activate T cells in the presence of PD-L1-positive tumors, but is sufficient to trigger T cell activation in the presence of PD-L1-negative cells. In order to better understand HVEM18-10 effects in vivo and especially disentangle its CIS and TRANS effects, we developed a knockin (KI) mouse model expressing human BTLA (huBTLA+/+) and a KI mouse model expressing both huBTLA+/+/huHVEM+/+ (double KI (DKI)). In vivo preclinical experiments performed in both mouse models showed that HVEM18-10 treatment was efficient to decrease human HVEM+ tumor growth. In the DKI model, anti-HVEM18-10 treatment induces a decrease of exhausted CD8+ T cells and regulatory T cells and an increase of effector memory CD4+ T cells within the tumor. Interestingly, mice which completely rejected tumors (±20%) did not develop tumors on rechallenge in both settings, therefore showing a marked T cell-memory phenotype effect. CONCLUSIONS: Altogether, our preclinical models validate anti-HVEM18-10 as a promising therapeutic antibody to use in clinics as a monotherapy or in combination with existing immunotherapies (antiprogrammed cell death protein 1/anti-PD-L1/anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4)).


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Animales , Humanos , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Inmunológicos/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo
5.
STAR Protoc ; 3(4): 101768, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36269638

RESUMEN

This protocol details the step-by-step procedure for in-depth immune phenotyping of peripheral blood natural killer (NK) cells from clinical samples by mass cytometry. The protocol consists of three main steps: PBMC incubation with a mix of metal-conjugated antibodies for extracellular phenotyping followed by fixation, permeabilization and incubation with a mix of metal-conjugated antibodies for staining of intracellular proteins, and sample acquisition on a mass cytometer. High-dimensional analysis enables the visualization of NK cell subsets and their phenotypical characteristics. For complete details on the use and execution of this protocol, please refer to Chretien et al. (2021).


Asunto(s)
Células Asesinas Naturales , Leucocitos Mononucleares , Humanos , Citometría de Flujo/métodos , Anticuerpos , Coloración y Etiquetado
6.
Trends Pharmacol Sci ; 43(12): 1001-1003, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36049970

RESUMEN

The antitumor activity of exercise by means of enhanced immune activation is documented, but better identification of the underlying mechanisms is required to develop new therapeutic strategies. Recent work from the Dr Bar-Sagi group reveals that exercise engages IL-15 signaling and pharmacological activation of the IL-15/IL-15R axis mimics the exercise-driven immune cell-mediated cytotoxicity in pancreatic cancer.


Asunto(s)
Interleucina-15 , Transducción de Señal , Humanos
7.
Cancers (Basel) ; 14(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35884417

RESUMEN

Strategies are being explored to increase the efficiency of immune checkpoint inhibitors (ICIs) targeting PD1/PDL1 in triple-negative breast cancer (TNBC), including combination with therapies inhibiting intracellular immune checkpoints such as CISH (Cytokine-induced SH2 protein). Correlation between CISH expression and TNBC features is unknown. We retrospectively analyzed CISH expression in 1936 clinical TNBC samples and searched for correlations with clinical variables, including metastasis-free interval (MFI). Among TNBCs, 44% were identified as "CISH-up" and 56% "CISH-down". High expression was associated with pathological axillary lymph node involvement, more adjuvant chemotherapy, and Lehmann's immunomodulatory and luminal AR subtypes. The "CISH-up" class showed longer 5-year MFI (72%) than the "CISH-down" class (60%; p = 2.8 × 10-2). CISH upregulation was associated with activation of IFNα and IFNγ pathways, antitumor cytotoxic immune response, and signatures predictive for ICI response. When CISH and PDL1 were upregulated together, the 5-year MFI was 81% versus 52% when not upregulated (p = 6.21 × 10-6). The two-gene model provided more prognostic information than each gene alone and maintained its prognostic value in multivariate analysis. CISH expression is associated with longer MFI in TNBC and refines the prognostic value of PDL1 expression. Such observation might reinforce the therapeutic relevance of combining CISH inhibition with an anti-PD1/PDL1 ICI.

8.
Front Immunol ; 13: 899068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795660

RESUMEN

Immunotherapies targeting the "don't eat me" myeloid checkpoint constituted by CD47 SIRPα interaction have promising clinical potential but are limited by toxicities associated with the destruction of non-tumor cells. These dose-limiting toxicities demonstrate the need to highlight the mechanisms of anti-CD47-SIRPα therapy effects on non-tumor CD47-bearing cells. Given the increased incidence of lymphopenia in patients receiving anti-CD47 antibodies and the strong ADCC (antibody-dependent cellular cytotoxicity) effector function of polymorphonuclear cells (PMNs), we investigated the behavior of primary PMNs cocultured with primary T cells in the presence of anti-CD47 mAbs. PMNs killed T cells in a CD47-mAb-dependent manner and at a remarkably potent PMN to T cell ratio of 1:1. The observed cytotoxicity was produced by a novel combination of both trogocytosis and a strong respiratory burst induced by classical ADCC and CD47-SIRPα checkpoint blockade. The complex effect of the CD47 blocking mAb could be recapitulated by combining its individual mechanistic elements: ADCC, SIRPα blockade, and ROS induction. Although previous studies had concluded that disruption of SIRPα signaling in PMNs was limited to trogocytosis-specific cytotoxicity, our results suggest that SIRPα also tightly controls activation of NADPH oxidase, a function demonstrated during differentiation of immature PMNs but not so far in mature PMNs. Together, our results highlight the need to integrate PMNs in the development of molecules targeting the CD47-SIRPα immune checkpoint and to design agents able to enhance myeloid cell function while limiting adverse effects on healthy cells able to participate in the anti-tumor immune response.


Asunto(s)
Antígenos de Diferenciación , Antígeno CD47 , NADPH Oxidasas , Neoplasias , Receptores Inmunológicos , Linfocitos T , Trogocitosis , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos de Diferenciación/inmunología , Antígeno CD47/inmunología , Activación Enzimática , Humanos , Recuento de Linfocitos , NADPH Oxidasas/inmunología , NADPH Oxidasas/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Receptores Inmunológicos/inmunología , Linfocitos T/inmunología , Trogocitosis/inmunología
9.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35589278

RESUMEN

BACKGROUND: The success and limitations of current immunotherapies have pushed research toward the development of alternative approaches and the possibility to manipulate other cytotoxic immune cells such as natural killer (NK) cells. Here, we targeted an intracellular inhibiting protein 'cytokine inducible SH2-containing protein' (CISH) in NK cells to evaluate the impact on their functions and antitumor properties. METHODS: To further understand CISH functions in NK cells, we developed a conditional Cish-deficient mouse model in NK cells (Cishfl/flNcr1Ki/+ ). NK cells cytokine expression, signaling and cytotoxicity has been evaluated in vitro. Using intravenous injection of B16F10 melanoma cell line and EO711 triple negative breast cancer cell line, metastasis evaluation was performed. Then, orthotopic implantation of breast tumors was performed and tumor growth was followed using bioluminescence. Infiltration and phenotype of NK cells in the tumor was evaluated. Finally, we targeted CISH in human NK-92 or primary NK cells, using a technology combining the CRISPR(i)-dCas9 tool with a new lentiviral pseudotype. We then tested human NK cells functions. RESULTS: In Cishfl/flNcr1Ki/+ mice, we detected no developmental or homeostatic difference in NK cells. Global gene expression of Cishfl/flNcr1Ki/+ NK cells compared with Cish+/+Ncr1Ki/+ NK cells revealed upregulation of pathways and genes associated with NK cell cycling and activation. We show that CISH does not only regulate interleukin-15 (IL-15) signaling pathways but also natural cytotoxicity receptors (NCR) pathways, triggering CISH protein expression. Primed Cishfl/flNcr1Ki/+ NK cells display increased activation upon NCR stimulation. Cishfl/flNcr1Ki/+ NK cells display lower activation thresholds and Cishfl/flNcr1Ki/+ mice are more resistant to tumor metastasis and to primary breast cancer growth. CISH deletion favors NK cell accumulation to the primary tumor, optimizes NK cell killing properties and decreases TIGIT immune checkpoint receptor expression, limiting NK cell exhaustion. Finally, using CRISPRi, we then targeted CISH in human NK-92 or primary NK cells. In human NK cells, CISH deletion also favors NCR signaling and antitumor functions. CONCLUSION: This study represents a crucial step in the mechanistic understanding and safety of Cish targeting to unleash NK cell antitumor function in solid tumors. Our results validate CISH as an emerging therapeutic target to enhance NK cell immunotherapy.


Asunto(s)
Receptor 1 Gatillante de la Citotoxidad Natural , Neoplasias , Animales , Humanos , Células Asesinas Naturales , Ratones , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
10.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35393954

RESUMEN

Mutation of the TET2 DNA-hydroxymethylase has been associated with a number of immune pathologies. The disparity in phenotype and clinical presentation among these pathologies leads to questions regarding the role of TET2 mutation in promoting disease evolution in different immune cell types. Here we show that, in primary mast cells, Tet2 expression is induced in response to chronic and acute activation signals. In TET2-deficient mast cells, chronic activation via the oncogenic KITD816V allele associated with mastocytosis, selects for a specific epigenetic signature characterized by hypermethylated DNA regions (HMR) at immune response genes. H3K27ac and transcription factor binding is consistent with priming or more open chromatin at both HMR and non-HMR in proximity to immune genes in these cells, and this signature coincides with increased pathological inflammation signals. HMR are also associated with a subset of immune genes that are direct targets of TET2 and repressed in TET2-deficient cells. Repression of these genes results in immune tolerance to acute stimulation that can be rescued with vitamin C treatment or reiterated with a Tet inhibitor. Overall, our data support a model where TET2 plays a direct role in preventing immune tolerance in chronically activated mast cells, supporting TET2 as a viable target to reprogram the innate immune response for innovative therapies.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Tolerancia Inmunológica , Mastocitos , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Mastocitos/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34050021

RESUMEN

Natural killer (NK) cells are major antileukemic immune effectors. Leukemic blasts have a negative impact on NK cell function and promote the emergence of phenotypically and functionally impaired NK cells. In the current work, we highlight an accumulation of CD56-CD16+ unconventional NK cells in acute myeloid leukemia (AML), an aberrant subset initially described as being elevated in patients chronically infected with HIV-1. Deep phenotyping of NK cells was performed using peripheral blood from patients with newly diagnosed AML (n = 48, HEMATOBIO cohort, NCT02320656) and healthy subjects (n = 18) by mass cytometry. We showed evidence of a moderate to drastic accumulation of CD56-CD16+ unconventional NK cells in 27% of patients. These NK cells displayed decreased expression of NKG2A as well as the triggering receptors NKp30 and NKp46, in line with previous observations in HIV-infected patients. High-dimensional characterization of these NK cells highlighted a decreased expression of three additional major triggering receptors required for NK cell activation, NKG2D, DNAM-1, and CD96. A high proportion of CD56-CD16+ NK cells at diagnosis was associated with an adverse clinical outcome and decreased overall survival (HR = 0.13; P = 0.0002) and event-free survival (HR = 0.33; P = 0.018) and retained statistical significance in multivariate analysis. Pseudotime analysis of the NK cell compartment highlighted a disruption of the maturation process, with a bifurcation from conventional NK cells toward CD56-CD16+ NK cells. Overall, our data suggest that the accumulation of CD56-CD16+ NK cells may be the consequence of immune escape from innate immunity during AML progression.


Asunto(s)
Citometría de Flujo/métodos , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Antígenos CD/inmunología , Humanos , Inmunofenotipificación , Activación de Linfocitos/inmunología , Inducción de Remisión , Resultado del Tratamiento
13.
Cancers (Basel) ; 13(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503843

RESUMEN

The rationale for therapeutic targeting of Vδ2+ γδ T cells in breast cancer is strongly supported by in vitro and murine preclinical investigations, characterizing them as potent breast tumor cell killers and source of Th1-related cytokines, backing cytotoxic αß T cells. Nonetheless, insights regarding Vδ2+ γδ T cell phenotypic alterations in human breast cancers are still lacking. This paucity of information is partly due to the challenging scarcity of these cells in surgical specimens. αß T cell phenotypic alterations occurring in the tumor bed are detectable in the periphery and correlate with adverse clinical outcomes. Thus, we sought to determine through an exploratory study whether Vδ2+ γδ T cells phenotypic changes can be detected within breast cancer patients' peripheral blood, along with association with tumor progression. By using mass cytometry, we quantified 130 immune variables from untreated breast cancer patients' peripheral blood. Supervised analyses and dimensionality reduction algorithms evidenced circulating Vδ2+ γδ T cell phenotypic alterations already established at diagnosis. Foremost, terminally differentiated Vδ2+ γδ T cells displaying phenotypes of exhausted senescent T cells associated with lymph node involvement. Thereby, our results support Vδ2+ γδ T cells implication in breast cancer pathogenesis and progression, besides shedding light on liquid biopsies to monitor surrogate markers of tumor-infiltrating Vδ2+ γδ T cell antitumor activity.

14.
Front Immunol ; 12: 730970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975835

RESUMEN

Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rß expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.


Asunto(s)
Interleucina-15/farmacología , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/inmunología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-15/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/genética
18.
Front Immunol ; 11: 75, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082327

RESUMEN

Natural killer (NK) cell activation is controlled by a balance of activating and inhibitory signals and cytokines such as IL-15. We previously identified cytokine-inducible SH2-containing protein (CIS) as a negative regulator of IL-15 signaling in NK cells under inflammatory conditions. While the functional effect of Cish-deficiency in NK cells was obvious by their increased anti-tumor immunity and hyper-proliferative response to IL-15, it remained unclear how CIS regulates NK cell biology in steady-state. Here, we investigated the role of CIS in the homeostatic maintenance of NK cells and found CIS-ablation promoted terminal differentiation of NK cells and increased turnover, suggesting that under steady-state conditions, CIS plays a role in maintaining IL-15 driven regulation of NK cells in vivo. However, hyper-responsiveness to IL-15 did not manifest in NK cell accumulation, even when the essential NK cell apoptosis mediator, Bcl2l11 (BIM) was deleted in addition to Cish. Instead, loss of CIS conferred a lower activation threshold, evidenced by augmented functionality on a per cell basis both in vitro and in vivo without prior priming. We conclude that Cish regulates IL-15 signaling in NK cells in vivo, and through the rewiring of several activation pathways leads to a reduction in activation threshold, decreasing the requirement for priming and improving NK cell anti-tumor function. Furthermore, this study highlights the tight regulation of NK cell homeostasis by several pathways which prevent NK cell accumulation when IL-15 signaling and intrinsic apoptosis are dysregulated.


Asunto(s)
Diferenciación Celular/inmunología , Homeostasis/inmunología , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Front Immunol ; 10: 1307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244851

RESUMEN

Women with low levels of vitamin D have a higher risk of developing breast cancer. Numerous studies associated the presence of a CD8+ T cell infiltration with a good prognosis. As vitamin D may play a key role in the modulation of the immune system, the objective of this work was to evaluate the impact of vitamin D on the breast cancer progression and mammary tumor microenvironment. We show that vitamin D decreases breast cancer tumor growth. Immunomonitoring of the different immune subsets in dissociated tumors revealed an increase in tumor infiltrating CD8+ T cells in the vitamin D-treated group. Interestingly, these CD8+ T cells exhibited a more active T cell (TEM/CM) phenotype. However, in high-fat diet conditions, we observed an opposite effect of vitamin D on breast cancer tumor growth, associated with a reduction of CD8+ T cell infiltration. Our data show that vitamin D is able to modulate breast cancer tumor growth and inflammation in the tumor microenvironment in vivo. Unexpectedly, this effect is reversed in high-fat diet conditions, revealing the importance of diet on tumor growth. We believe that supplementation with vitamin D can in certain conditions represent a new adjuvant in the treatment of breast cancers.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Vitamina D/inmunología , Animales , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Progresión de la Enfermedad , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Endogámicos C57BL , Pronóstico , Microambiente Tumoral/inmunología
20.
Front Immunol ; 9: 2864, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564247

RESUMEN

T cell activation is initiated upon ligand engagement of the T cell receptor (TCR) and costimulatory receptors. The CD28 molecule acts as a major costimulatory receptor in promoting full activation of naive T cells. However, despite extensive studies, why naive T cell activation requires concurrent stimulation of both the TCR and costimulatory receptors remains poorly understood. Here, we explore this issue by analyzing calcium response as a key early signaling event to elicit T cell activation. Experiments using mouse naive CD4+ T cells showed that engagement of the TCR or CD28 with the respective cognate ligand was able to trigger a rise in fluctuating calcium mobilization levels, as shown by the frequency and average response magnitude of the reacting cells compared with basal levels occurred in unstimulated cells. The engagement of both TCR and CD28 enabled a further increase of these two metrics. However, such increases did not sufficiently explain the importance of the CD28 pathways to the functionally relevant calcium responses in T cell activation. Through the autocorrelation analysis of calcium time series data, we found that combined but not separate TCR and CD28 stimulation significantly prolonged the average decay time (τ) of the calcium signal amplitudes determined with the autocorrelation function, compared with its value in unstimulated cells. This increasement of decay time (τ) uniquely characterizes the fluctuating calcium response triggered by concurrent stimulation of TCR and CD28, as it could not be achieved with either stronger TCR stimuli or by co-engaging both TCR and LFA-1, and likely represents an important feature of competent early signaling to provoke efficient T cell activation. Our work has thus provided new insights into the interplay between the TCR and CD28 early signaling pathways critical to trigger naive T cell activation.


Asunto(s)
Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/inmunología , Señalización del Calcio/inmunología , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Células Presentadoras de Antígenos , Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultivo , Antígeno-1 Asociado a Función de Linfocito/inmunología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Ratones Transgénicos , Cultivo Primario de Células , Receptores de Antígenos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA