Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 36(7): 397-410, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36853198

RESUMEN

Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Oomicetos , Peronospora , Phytophthora infestans , Oomicetos/genética , Oomicetos/metabolismo , Proteínas/metabolismo , Genoma , Evolución Biológica , Plantas/metabolismo , Phytophthora infestans/genética , Enfermedades de las Plantas
2.
PLoS Pathog ; 16(10): e1009012, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33104763

RESUMEN

Pathogens that infect plants and animals use a diverse arsenal of effector proteins to suppress the host immune system and promote infection. Identification of effectors in pathogen genomes is foundational to understanding mechanisms of pathogenesis, for monitoring field pathogen populations, and for breeding disease resistance. We identified candidate effectors from the lettuce downy mildew pathogen Bremia lactucae by searching the predicted proteome for the WY domain, a structural fold found in effectors that has been implicated in immune suppression as well as effector recognition by host resistance proteins. We predicted 55 WY domain containing proteins in the genome of B. lactucae and found substantial variation in both sequence and domain architecture. These candidate effectors exhibit several characteristics of pathogen effectors, including an N-terminal signal peptide, lineage specificity, and expression during infection. Unexpectedly, only a minority of B. lactucae WY effectors contain the canonical N-terminal RXLR motif, which is a conserved feature in the majority of cytoplasmic effectors reported in Phytophthora spp. Functional analysis of 21 effectors containing WY domains revealed 11 that elicited cell death on wild accessions and domesticated lettuce lines containing resistance genes, indicative of recognition of these effectors by the host immune system. Only two of the 11 recognized effectors contained the canonical RXLR motif, suggesting that there has been an evolutionary divergence in sequence motifs between genera; this has major consequences for robust effector prediction in oomycete pathogens.


Asunto(s)
Lactuca/genética , Oomicetos/genética , Secuencia de Aminoácidos/genética , Resistencia a la Enfermedad/genética , Genoma/genética , Interacciones Huésped-Patógeno , Lactuca/metabolismo , Oomicetos/patogenicidad , Phytophthora infestans/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína/genética , Alineación de Secuencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...