Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 282: 116742, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39047368

RESUMEN

Fluoride is an environmental pollutant that severely injures various organisms in ecosystems. Herein, the non-target organism, fall webworm (Hyphantria cunea), was used to determine the toxicological mechanism of NaF exposure. In this study, H. cunea exposed to NaF showed significant declines in growth and reproduction. The authors conducted RNA sequencing on adipose bodies and midgut tissues from NaF-exposed H. cunea larvae to uncover the toxicological mechanisms. The results showed that extracellular matrix-receptor interaction, pentose and glucuronate interconversions, fatty acid biosynthesis, and ferroptosis might contribute to NaF stress. NaF significantly decreased the antioxidant level, nitrous oxide synthase activity, and NO content, while significantly increasing lipid peroxidation. NaF induced significant changes in the expression of energy metabolism genes. However, the triglyceride content was significantly decreased and the lipase enzyme activity was significantly increased. Moreover, the expression levels of light and heavy chains of ferritin were inhibited in NaF-exposed H. cunea. NaF caused ferritin Fe2+overload in FerHCH1 and FerLCH knockdown H. cunea larvae, activated reactive oxygen species, and reduced the total iron content, eventually increasing the mortality H. cunea larvae. This study identified the toxicological mechanisms of NaF in lipid synthesis and energy metabolism in H. cunea, providing a basis for understanding the molecular mechanisms of NaF toxicity and developing pollution control strategies.

2.
J Insect Physiol ; 155: 104651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763360

RESUMEN

Hemolin, a member of the immunoglobulin superfamily, plays a crucial role in the immune responses of insects against pathogens. However, the innate immune response of Hemolin to baculovirus infection varies among different insects, and the antiviral effects of Hemolin in Hyphantria cunea (HcHemolin) remain poorly understood. Our results showed that HcHemolin was expressed throughout all developmental stages, with higher expressions observed during pupal and adult stages of H. cunea. Additionally, HcHemolin was expressed in reproductive and digestive organs. The expression levels of the HcHemolin were induced significantly following H. cunea nucleopolyhedrovirus (HcNPV) infection. The susceptibility of H. cunea larvae to HcNPV decreased upon silencing of HcHemolin, resulting in a 40% reduction in median lifespan compared to the control group. The relative growth rate (RGR), the relative efficiency of consumption rate (RCR), the efficiency of the conversion of ingested food (ECI), and efficiency of the conversion of digested food (ECD) of silenced H. cunea larvae were significantly lower than those of the control group. Immune challenge assays showed that the median lifespan of treated H. cunea larvae was two-fold longer than the control group after HcNPV and HcHemolin protein co-injection. Therefore, we propose that HcHemolin plays a crucial role in regulating the growth, development, and food utilization of H. cunea, as well as in the antiviral immune response against HcNPV. These findings provide implications for the development of targeted nucleic acid pesticides and novel strategies for pollution-free biological control synergists for HcNPV.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/fisiología , Larva/inmunología , Larva/crecimiento & desarrollo , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/virología , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Inmunidad Innata , Pupa/inmunología , Pupa/crecimiento & desarrollo , Pupa/virología , Inmunoglobulinas
3.
Artículo en Inglés | MEDLINE | ID: mdl-31401083

RESUMEN

To identify the effects of poplar secondary metabolites on Lymantria dispar, six poplar secondary metabolites (i.e., caffeic acid, salicin, rutin, quercetin, flavone, and catechol) and three mixtures containing characteristic secondary metabolites in poplar were selected. Mixture 1 contained flavone and salicin, mixture 2 contained salicin, caffeic acid, and catechol, and mixture 3 contained flavone, catechol, and caffeic acid. Mixtures were added to artificial diets used to feed 2nd instar L. dispar larvae. The effects of different secondary metabolites on larval growth and development, antifeedant activity, nutrient utilization, and detoxifying enzymatic activity were investigated. Results revealed that there were different influences on L. dispar larvae. The maximum antifeedant rate of flavone was 87.58%. Larvae treated with mixture 2 had a significantly longer development time of 5.61 d with a survival rate of 38.75% for 15 d, which is lower than a single secondary metabolite. No L. dispar larvae survived on feeding diets containing flavone for 7 d. An increase in GST and P450 activities in larvae was significantly induced during the 72 h feeding on artificial diets containing experimental secondary metabolites. After treatment containing salicin and flavone for 24-72 h, P450 activity increased at first then decreased. These results provide a foundation for further investigation on the host selection and underlying adaptation mechanisms in L. dispar.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Larva/enzimología , Larva/crecimiento & desarrollo , Lepidópteros/enzimología , Lepidópteros/crecimiento & desarrollo , Animales , Alcoholes Bencílicos/metabolismo , Ácidos Cafeicos/metabolismo , Catecoles/metabolismo , Flavonas/metabolismo , Glucósidos/metabolismo , Populus/metabolismo , Quercetina/metabolismo , Rutina/metabolismo , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA