Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 16: 1419253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938596

RESUMEN

Introduction: At least one-third of the identified risk alleles from Genome-Wide Association Studies (GWAS) of Alzheimer's disease (AD) are involved in lipid metabolism, lipid transport, or direct lipid binding. In fact, a common genetic variant (ε4) in a cholesterol and phospholipid transporter, Apolipoprotein E (APOEε4), is the primary genetic risk factor for late-onset AD. In addition to genetic variants, lipidomic studies have reported severe metabolic dysregulation in human autopsy brain tissue, cerebrospinal fluid, blood, and multiple mouse models of AD. Methods: We aimed to identify an overarching metabolic pathway in lipid metabolism by integrating analyses of lipidomics and transcriptomics from the Religious Order Study and Rush Memory Aging Project (ROSMAP) using differential analysis and network correlation analysis. Results: Coordinated differences in lipids were found to be dysregulated in association with both mild cognitive impairment (MCI) and APOEε4 carriers. Interestingly, these correlations were weakened when adjusting for education. Indeed, the cognitively non-impaired APOEε4 carriers have higher education levels in the ROSMAP cohort, suggesting that this lipid signature may be associated with a resilience phenotype. Network correlation analysis identified multiple differential lipids within a single module that are substrates and products in the Lands Cycle for acyl chain remodeling. In addition, our analyses identified multiple genes in the Lands Cycle acyl chain remodeling pathway, which were associated with cognitive decline independent of amyloid-ß (Aß) load and tau tangle pathologies. Discussion: Our studies highlight the critical differences in acyl chain remodeling in brain tissue from APOEε4 carriers and individual non-carriers with MCI. A coordinated lipid profile shift in dorsolateral prefrontal cortex from both APOEε4 carriers and MCI suggests differences in lipid metabolism occur early in disease stage and highlights lipid homeostasis as a tractable target for early disease modifying intervention.

2.
Acta Neuropathol ; 147(1): 70, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598053

RESUMEN

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Asunto(s)
Enfermedad de Alzheimer , Fibronectinas , Anciano , Animales , Humanos , Enfermedad de Alzheimer/genética , Fibronectinas/genética , Variación Genética/genética , Gliosis , Pez Cebra
3.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370689

RESUMEN

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.

4.
STAR Protoc ; 5(1): 102779, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100357

RESUMEN

Studying cholesterol biology in the brain has been greatly hindered by the lack of adequate cholesterol visualization techniques. Here, we present a protocol for using a high-affinity cholesterol probe D4H∗-mCherry as a histology reagent in mouse or human brain tissue. We describe steps for D4H∗ tissue treatment and crosslinking leading to stable labeling of intracellular membrane cholesterol. Furthermore, co-labeling with Rab5 endosomal marker and optimized buffers to reduce background enable punctate cholesterol visualization within the organelle membranes.


Asunto(s)
Colesterol , Membranas Intracelulares , Animales , Humanos , Ratones , Endosomas , Encéfalo/diagnóstico por imagen
5.
Front Aging Neurosci ; 14: 923673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034139

RESUMEN

While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.

6.
Transl Psychiatry ; 12(1): 129, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351864

RESUMEN

Apolipoprotein E ε4 (APOE4) is the primary genetic risk factor for the late-onset form of Alzheimer's disease (AD). Although the reason for this association is not completely understood, researchers have uncovered numerous effects of APOE4 expression on AD-relevant brain processes, including amyloid beta (Aß) accumulation, lipid metabolism, endosomal-lysosomal trafficking, and bioenergetics. In this study, we aimed to determine the effect of APOE4 allelic dosage on regional brain lipid composition in aged mice, as well as in cultured neurons. We performed a targeted lipidomic analysis on an AD-vulnerable brain region (entorhinal cortex; EC) and an AD-resistant brain region (primary visual cortex; PVC) from 14-15 month-old APOE3/3, APOE3/4, and APOE4/4 targeted replacement mice, as well as on neurons cultured with conditioned media from APOE3/3 or APOE4/4 astrocytes. Our results reveal that the EC possesses increased susceptibility to APOE4-associated lipid alterations compared to the PVC. In the EC, APOE4 expression showed a dominant effect in decreasing diacylglycerol (DAG) levels, and a semi-dominant, additive effect in the upregulation of multiple ceramide, glycosylated sphingolipid, and bis(monoacylglycerol)phosphate (BMP) species, lipids known to accumulate as a result of endosomal-lysosomal dysfunction. Neurons treated with conditioned media from APOE4/4 vs. APOE3/3 astrocytes showed similar alterations of DAG and BMP species to those observed in the mouse EC. Our results suggest that APOE4 expression differentially modulates regional neuronal lipid signatures, which may underlie the increased susceptibility of EC-localized neurons to AD pathology.


Asunto(s)
Péptidos beta-Amiloides , Apolipoproteína E4 , Corteza Entorrinal , Dosificación de Gen , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Corteza Entorrinal/metabolismo , Lipidómica , Ratones
7.
Alzheimers Res Ther ; 12(1): 141, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148345

RESUMEN

Possession of the ε4 allele of apolipoprotein E (APOE) is the primary genetic risk factor for the sporadic form of Alzheimer's disease (AD). While researchers have extensively characterized the impact that APOE ε4 (APOE4) has on the susceptibility of AD, far fewer studies have investigated the phenotypic differences of patients with AD who are APOE4 carriers vs. those who are non-carriers. In order to understand these differences, we performed a qualitative systematic literature review of the reported cognitive and pathological differences between APOE4-positive (APOE4+) vs. APOE4-negative (APOE4-) AD patients. The studies performed on this topic to date suggest that APOE4 is not only an important mediator of AD susceptibility, but that it likely confers specific phenotypic heterogeneity in AD presentation, as well. Specifically, APOE4+ AD patients appear to possess more tau accumulation and brain atrophy in the medial temporal lobe, resulting in greater memory impairment, compared to APOE4- AD patients. On the other hand, APOE4- AD patients appear to possess more tau accumulation and brain atrophy in the frontal and parietal lobes, resulting in greater impairment in executive function, visuospatial abilities, and language, compared to APOE4+ AD patients. Although more work is necessary to validate and interrogate these findings, these initial observations of pathological and cognitive heterogeneity between APOE4+ vs. APOE4- AD patients suggest that there is a fundamental divergence in AD manifestation related to APOE genotype, which may have important implications in regard to the therapeutic treatment of these two patient populations.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E , Atrofia , Cognición , Humanos
8.
Nat Rev Drug Discov ; 19(9): 609-633, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32709961

RESUMEN

The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Metabolismo Energético/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Animales , Glucólisis/fisiología , Humanos , Fosforilación Oxidativa
9.
Sci Rep ; 10(1): 4277, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152337

RESUMEN

The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer's disease (AD). However, the reason for the association between APOE4 and AD remains unclear. While much of the research has focused on the ability of the apoE4 protein to increase the aggregation and decrease the clearance of Aß, there is also an abundance of data showing that APOE4 negatively impacts many additional processes in the brain, including bioenergetics. In order to gain a more comprehensive understanding of APOE4's role in AD pathogenesis, we performed a transcriptomics analysis of APOE4 vs. APOE3 expression in the entorhinal cortex (EC) and primary visual cortex (PVC) of aged APOE mice. This study revealed EC-specific upregulation of genes related to oxidative phosphorylation (OxPhos). Follow-up analysis utilizing the Seahorse platform showed decreased mitochondrial respiration with age in the hippocampus and cortex of APOE4 vs. APOE3 mice, but not in the EC of these mice. Additional studies, as well as the original transcriptomics data, suggest that multiple bioenergetic pathways are differentially regulated by APOE4 expression in the EC of aged APOE mice in order to increase the mitochondrial coupling efficiency in this region. Given the importance of the EC as one of the first regions to be affected by AD pathology in humans, the observation that the EC is susceptible to differential bioenergetic regulation in response to a metabolic stressor such as APOE4 may point to a causative factor in the pathogenesis of AD.


Asunto(s)
Apolipoproteína E4/genética , Encéfalo/metabolismo , Metabolismo Energético/genética , Metaboloma , Mitocondrias/patología , Transcriptoma , Animales , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo
10.
Nat Commun ; 8(1): 1464, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133888

RESUMEN

The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer's disease (AD). However, the reason APOE4 is associated with increased AD risk remains a source of debate. Neuronal hyperactivity is an early phenotype in both AD mouse models and in human AD, which may play a direct role in the pathogenesis of the disease. Here, we have identified an APOE4-associated hyperactivity phenotype in the brains of aged APOE mice using four complimentary techniques-fMRI, in vitro electrophysiology, in vivo electrophysiology, and metabolomics-with the most prominent hyperactivity occurring in the entorhinal cortex. Further analysis revealed that this neuronal hyperactivity is driven by decreased background inhibition caused by reduced responsiveness of excitatory neurons to GABAergic inhibitory inputs. Given the observations of neuronal hyperactivity in prodromal AD, we propose that this APOE4-driven hyperactivity may be a causative factor driving increased risk of AD among APOE4 carriers.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Envejecimiento , Animales , Apolipoproteína E3/genética , Ondas Encefálicas/fisiología , Metabolismo Energético/genética , Ácidos Grasos/biosíntesis , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos
11.
Front Neurosci ; 11: 702, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311783

RESUMEN

Possession of the ε4 allele of apolipoprotein E (APOE) is the major genetic risk factor for late-onset Alzheimer's disease (AD). Although numerous hypotheses have been proposed, the precise cause of this increased AD risk is not yet known. In order to gain a more comprehensive understanding of APOE4's role in AD, we performed RNA-sequencing on an AD-vulnerable vs. an AD-resistant brain region from aged APOE targeted replacement mice. This transcriptomics analysis revealed a significant enrichment of genes involved in endosomal-lysosomal processing, suggesting an APOE4-specific endosomal-lysosomal pathway dysregulation in the brains of APOE4 mice. Further analysis revealed clear differences in the morphology of endosomal-lysosomal compartments, including an age-dependent increase in the number and size of early endosomes in APOE4 mice. These findings directly link the APOE4 genotype to endosomal-lysosomal dysregulation in an in vivo, AD pathology-free setting, which may play a causative role in the increased incidence of AD among APOE4 carriers.

12.
Front Chem ; 3: 70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779476

RESUMEN

Nitration of tyrosine and other aromatic amino acid residues in proteins occurs in the setting of inflammatory, neurodegenerative, and cardiovascular diseases-importantly, this modification has been implicated in the pathogenesis of diverse diseases and the physiological process of aging. To understand the biological consequences of aromatic nitration in both health and disease, it is critical to molecularly identify the proteins that undergo nitration, specify their cognate modification sites and quantify their extent of nitration. To date, unbiased identification of nitrated proteins has often involved painstaking 2D-gel electrophoresis followed by Western Blotting with an anti-nitrotyrosine antibody for detection. Apart from being relatively slow and laborious, this method suffers from limited coverage, the potential for false-positive identifications, and failure to reveal specific amino acid modification sites. To overcome these shortcomings, we have developed a solid-phase, chemical-capture approach for unbiased and high-throughput discovery of nitrotyrosine and nitrotryptophan sites in proteins. Utilizing this method, we have successfully identified several endogenously nitrated proteins in rat brain and a total of 244 nitrated peptides from 145 proteins following in vitro exposure of rat brain homogenates to the nitrating agent peroxynitrite (1 mM). As expected, Tyr residues constituted the great majority of peroxynitrite-mediated protein nitration sites; however, we were surprised to discover several brain proteins that contain nitrated Trp residues. By incorporating a stable-isotope labeling step, this new Aromatic Nitration Site IDentification (ANSID) method was also adapted for relative quantification of nitration site abundances in proteins. Application of the ANSID method offers great potential to advance our understanding of the role of protein nitration in disease pathogenesis and normal physiology.

13.
Proc Natl Acad Sci U S A ; 110(28): 11624-9, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798440

RESUMEN

The serotonin transporter (SERT) is a major regulator of serotonergic neurotransmission and anxiety-related behaviors. SERT is expressed in two alternative polyadenylation forms that differ by an evolutionarily conserved element in the 3' untranslated region of its mRNA. Expression of SERT mRNA containing the distal polyadenylation element is associated with decreased anxiety-related behaviors in mice and humans, suggesting that this element has behaviorally relevant modulatory effects on SERT expression. We have identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a protein known to integrate multiple signal transduction pathways with gene expression, as a SERT distal polyadenylation element binding protein. This interaction is functionally meaningful because genetic manipulation of hnRNPK alters expression of the SERT protein. Furthermore, the trophic factor S100ß induces Src-family kinase-mediated tyrosine phosphorylation of hnRNPK and increased SERT expression. These results identify a previously unknown mechanism of regulated SERT expression and provide a putative mechanism by which the SERT distal polyadenylation element modulates anxiety-related behaviors.


Asunto(s)
Ansiedad/metabolismo , Poli A/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Animales , Ansiedad/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Humanos , Ratones , MicroARNs/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Fosforilación , Unión Proteica , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/metabolismo , Familia-src Quinasas/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 305(5): H687-98, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792683

RESUMEN

Protein 3-nitrotyrosine (3-NT) formation is frequently regarded as a simple biomarker of disease, an irreversible posttranslational modification that can disrupt protein structure and function. Nevertheless, evidence that protein 3-NT modifications may be site selective and reversible, thus allowing for physiological regulation of protein activity, has begun to emerge. We have previously reported that cyclooxygenase (COX)-1 undergoes heme-dependent nitration of Tyr(385), an internal and catalytically essential residue. In the present study, we demonstrate that nitrated COX-1 undergoes a rapid reversal of nitration by substrate-selective and biologically regulated denitrase activity. Using nitrated COX-1 as a substrate, denitrase activity was validated and quantified by analytic HPLC with electrochemical detection and determined to be constitutively active in murine and human endothelial cells, macrophages, and a variety of tissue samples. Smooth muscle cells, however, contained little denitrase activity. Further characterizing this denitrase activity, we found that it was inhibited by free 3-NT and may be enhanced by endogenous nitric oxide and exogenously administered carbon monoxide. Finally, we describe a purification protocol that results in significant enrichment of a discrete denitrase-containing fraction, which maintains activity throughout the purification process. These findings reveal that nitrated COX-1 is a substrate for a denitrase in cells and tissues, implying that the reciprocal processes of nitration and denitration may modulate bioactive lipid synthesis in the setting of inflammation. In addition, our data reveal that denitration is a controlled process that may have broad importance for regulating cell signaling events in nitric oxide-generating systems during oxidative/nitrosative stress.


Asunto(s)
Ciclooxigenasa 1/metabolismo , Endotelio Vascular/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/metabolismo , Nitratos/metabolismo , Oxidorreductasas/metabolismo , Adaptación Fisiológica/fisiología , Animales , Línea Celular , Células Cultivadas , Endotelio Vascular/citología , Humanos , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Músculo Liso Vascular/citología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo/fisiología , Ratas , Tirosina/análogos & derivados , Tirosina/metabolismo
16.
J Proteomics ; 74(11): 2300-12, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-21679780

RESUMEN

Reactive nitrogen species are formed during a variety of disease states and have been shown to modify several amino acids on proteins. To date, the majority of research in this area has focused on the nitration of tyrosine residues to form 3-nitrotyrosine. However, emerging evidence suggests that another modification, nitration of tryptophan residues, to form nitrotryptophan (NO(2)-Trp), may also play a significant role in the biology of nitrosative stress. This review takes an in-depth look at NO(2)-Trp, presenting the current research about its formation, prevalence and biological significance, as well as the methods used to identify NO(2)-Trp-modified proteins. Although more research is needed to understand the full biological role of NO(2)-Trp, the data presented herein suggest a contribution to nitrosative stress-induced cell dysregulation and perhaps even in physiological cell processes.


Asunto(s)
Nitrocompuestos/aislamiento & purificación , Nitrocompuestos/metabolismo , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Triptófano/metabolismo , Animales , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Humanos , Modelos Biológicos , Nitrocompuestos/farmacología , Nitrosación/fisiología , Procesamiento Proteico-Postraduccional , Proteínas/fisiología
17.
J Am Chem Soc ; 132(11): 3914-22, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20196542

RESUMEN

Prostaglandin biosynthesis is catalyzed by two spatially and functionally distinct active sites in cyclooxygenase (COX) enzymes. Despite the crucial role of COXs in biology, molecular details regarding the function and regulation of these enzymes are incompletely defined. Reactive nitrogen species, formed during oxidative stress, produce modifications that alter COX functionalities and prostaglandin biosynthesis. We previously established that COX-1 undergoes selective nitration on Tyr385 via a mechanism that requires the presence of bound heme cofactor. As this is a critical residue for COX-1 catalysis, nitration at this site results in enzyme inactivation. We now show that occupancy of the COX-1 active site with substrate protects against Tyr385 nitration and redirects nitration to alternative Tyr residues on COX-1, preserving catalytic activity. This study reveals a novel role for the substrate in protecting COX-1 from inactivation by nitration in pathophysiological settings.


Asunto(s)
Ácido Peroxinitroso/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Ácido Araquidónico/metabolismo , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Ciclooxigenasa 1/química , Ciclooxigenasa 1/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Electroquímica , Activación Enzimática/efectos de los fármacos , Hemo/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Prostaglandina-Endoperóxido Sintasas/química , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Ratas , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Tirosina
18.
Neurobiol Dis ; 35(3): 433-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19524041

RESUMEN

Conditional inactivation of the 'neuropathy target esterase' (NTE) gene in mouse nerve cells was previously shown to result in CNS pathology comparable to the spongiform encephalopathy characteristic of prion diseases. To determine whether cellular prion protein (PrPc) is essential for development of this pathology we examined hippocampi of mice lacking NTE alone, PrPc alone or both NTE and PrPc. Light microscopic survey showed clear-cut spongiform changes in a majority of NTE-/- and NTE/PrP-/- double knockout mice but in only one PrP-/- mouse. EM analysis of spongiform lesions from NTE-/- and NTE/PrP-/- mice, and from the one affected PrP-/- mouse, revealed patches of branching tubular inclusions, comparable to the 'tubulovesicular inclusions' described previously in prion diseases. We conclude that spongiform pathology in conditional NTE knockout mice is not mediated by PrPc, and that tubulovesicular inclusions can be seen in spongiform encephalopathy of other etiologies and are not pathognomonic of prion disease.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Proteínas PrPC/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Animales , Hidrolasas de Éster Carboxílico/genética , Hipocampo/ultraestructura , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Proteínas PrPC/genética
19.
Methods Enzymol ; 441: 1-17, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18554526

RESUMEN

Nitration of tyrosine residues by nitric oxide (NO)-derived species results in the accumulation of 3-nitrotyrosine in proteins, a hallmark of nitrosative stress in cells and tissues. Tyrosine nitration is recognized as one of the multiple signaling modalities used by NO-derived species for the regulation of protein structure and function in health and disease. Various methods have been described for the quantification of protein 3-nitrotyrosine residues, and several strategies have been presented toward the goal of proteome-wide identification of protein tyrosine modification sites. This chapter details a useful protocol for the quantification of 3-nitrotyrosine in cells and tissues using high-pressure liquid chromatography with electrochemical detection. Additionally, this chapter describes a novel biotin-tagging strategy for specific enrichment of 3-nitrotyrosine-containing peptides. Application of this strategy, in conjunction with high-throughput MS/MS-based peptide sequencing, is anticipated to fuel efforts in developing comprehensive inventories of nitrosative stress-induced protein-tyrosine modification sites in cells and tissues.


Asunto(s)
Mezclas Complejas/análisis , Electroquímica/métodos , Proteínas/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Tirosina/análogos & derivados , Animales , Cromatografía Líquida de Alta Presión/métodos , Mezclas Complejas/química , Humanos , Tirosina/análisis , Tirosina/química
20.
J Cell Biol ; 177(6): 1119-32, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17576803

RESUMEN

Clearance of fibrin through proteolytic degradation is a critical step of matrix remodeling that contributes to tissue repair in a variety of pathological conditions, such as stroke, atherosclerosis, and pulmonary disease. However, the molecular mechanisms that regulate fibrin deposition are not known. Here, we report that the p75 neurotrophin receptor (p75(NTR)), a TNF receptor superfamily member up-regulated after tissue injury, blocks fibrinolysis by down-regulating the serine protease, tissue plasminogen activator (tPA), and up-regulating plasminogen activator inhibitor-1 (PAI-1). We have discovered a new mechanism in which phosphodiesterase PDE4A4/5 interacts with p75(NTR) to enhance cAMP degradation. The p75(NTR)-dependent down-regulation of cAMP results in a decrease in extracellular proteolytic activity. This mechanism is supported in vivo in p75(NTR)-deficient mice, which show increased proteolysis after sciatic nerve injury and lung fibrosis. Our results reveal a novel pathogenic mechanism by which p75(NTR) regulates degradation of cAMP and perpetuates scar formation after injury.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fibrosis , Receptor de Factor de Crecimiento Nervioso/fisiología , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Animales , Cicatriz/etiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Fibrinólisis , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Inhibidor 1 de Activador Plasminogénico/genética , Nervio Ciático/lesiones , Heridas y Lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...