Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(12): 6764-6770, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33295683

RESUMEN

Two photoswitchable arylazopyrozoles form hydrogels at a concentration of 1.2 % (w/v). With a molecular weight of 258.28 g mol-1 , these are the lowest known molecular weight hydrogelators that respond reversibly to light. Photoswitching of the E- to the Z-form by exposure to 365 nm light results in a macroscopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. In the case of the meta-arylazopyrozole, cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-solution state. Photoswitching for meta-arylazopyrozole is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a rhodamine B dye encapsulated in gels formed by the arylazopyrozoles is accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.

2.
Eur J Inorg Chem ; 2019(20): 2510-2517, 2019 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-31244551

RESUMEN

Two novel κ2-C,N-pyridine bridged [FeFe]-H2ase mimics (1 and 2) have been prepared and are shown to function as efficient molecular catalysts for electrocatalytic proton reduction. The elemental and structural composition of the complexes are confirmed by NMR and IR spectroscopy, high-resolution mass spectrometry and single-crystal X-ray diffraction. Electrochemical investigations reveal that the complexes reduce protons at their first reduction potential, resulting in the lowest overpotential (120 mV) ever reported for [FeFe]-H2ase mimics in proton reduction catalysis when mild acid (phenol) is used as proton source.

3.
Chem Commun (Camb) ; 55(21): 3081-3084, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30785463

RESUMEN

Hydrogen as a renewable fuel is viable when produced sustainably via proton reduction catalysis (PRC). Many homogeneous electrocatalysts perform PRC with high rates, but they all require a large overpotential to drive the reaction. Natural hydrogenase enzymes achieve reversible PRC with potentials close to the thermodynamic equilibrium through confinement of the active site in a well-defined protein pocket. Inspired by nature, we report a strategy that relies on the selective encapsulation of a synthetic hydrogenase mimic in a novel supramolecular cage. Catalyst confinement decreases the PRC overpotential by 150 mV, and is proposed to originate from the cationic cage stabilizing anionic reaction intermediates within the catalytic cycle.


Asunto(s)
Materiales Biomiméticos/química , Hidrogenasas/química , Compuestos de Hierro/química , Metaloporfirinas/química , Protones , Catálisis , Dominio Catalítico , Modelos Moleculares , Oxidación-Reducción , Termodinámica
4.
Chemistry ; 25(2): 609-620, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30351486

RESUMEN

Size-selective hydroformylation of terminal alkenes was attained upon embedding a rhodium bisphosphine complex in a supramolecular metal-organic cage that was formed by subcomponent self-assembly. The catalyst was bound in the cage by a ligand-template approach, in which pyridyl-zinc(II) porphyrin interactions led to high association constants (>105 m-1 ) for the binding of the ligands and the corresponding rhodium complex. DFT calculations confirm that the second coordination sphere forces the encapsulated active species to adopt the ee coordination geometry (i.e., both phosphine ligands in equatorial positions), in line with in situ high-pressure IR studies of the host-guest complex. The window aperture of the cage decreases slightly upon binding the catalyst. As a result, the diffusion of larger substrates into the cage is slower compared to that of smaller substrates. Consequently, the encapsulated rhodium catalyst displays substrate selectivity, converting smaller substrates faster to the corresponding aldehydes. This selectivity bears a resemblance to an effect observed in nature, where enzymes are able to discriminate between substrates based on shape and size by embedding the active site deep inside the hydrophobic pocket of a bulky protein structure.

5.
Chemistry ; 24(61): 16395-16406, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30117602

RESUMEN

The design of a biomimetic and fully base metal photocatalytic system for photocatalytic proton reduction in a homogeneous medium is described. A synthetic pyridylphosphole-appended [FeFe] hydrogenase mimic was encapsulated inside a supramolecular zinc porphyrin-based metal-organic cage structure Fe4 (Zn-L)6 . The binding is driven by the selective pyridine-zinc porphyrin interaction and results in the catalyst being bound strongly inside the hydrophobic cavity of the cage. Excitation of the capsule-forming porphyrin ligands with visible light while probing the IR spectrum confirmed that electron transfer takes place from the excited porphyrin cage to the catalyst residing inside the capsule. Light-driven proton reduction was achieved by irradiation of an acidic solution of the caged catalyst with visible light.

6.
Chemistry ; 24(55): 14693-14700, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30025184

RESUMEN

We present here the synthesis of chiral BINOL-derived (BINOL=1,1'-bi-2-naphthol) bisamine and bispyridine-aldehyde building blocks that can be used for the self-assembly of novel chiral FeII 2 L3 cages when mixed with an iron(II) precursor. The properties of a series of chiral cages were studied by NMR and circular dichroism (CD) spectroscopy, cold-spray ionization MS, and molecular modeling. Upon formation of the M2 L3 cages, the iron corners can adopt various isomeric forms: mer, fac-Δ, or fac-Λ. We found that the coordination geometry around the metal centers in R-Cages 1 and 2 were influenced by the chiral BINOL backbone only to a limited extent, as a mixture of cages was formed with fac and mer configurations at the iron corners. However, single cage species (fac-RR-Cage and fac-RS-Cage) that are enantiopure and highly symmetric were obtained by generating these chiral M2 L3 cages by using the bispyridine-aldehyde building blocks in combination with chiral amine moieties to form pyridylimine ligands for coordination to iron. Next to consistent NMR spectra, the CD spectra confirm the configurations fac-(Λ,Λ) and fac-(Δ,Δ) corresponding to RR- and RS-Cage, respectively.

7.
ACS Catal ; 8(4): 3469-3488, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29657887

RESUMEN

The hydroformylation reaction is one of the most intensively explored reactions in the field of homogeneous transition metal catalysis, and many industrial applications are known. However, this atom economical reaction has not been used to its full potential, as many selectivity issues have not been solved. Traditionally, the selectivity is controlled by the ligand that is coordinated to the active metal center. Recently, supramolecular strategies have been demonstrated to provide powerful complementary tools to control activity and selectivity in hydroformylation reactions. In this review, we will highlight these supramolecular strategies. We have organized this paper in sections in which we describe the use of supramolecular bidentate ligands, substrate preorganization by interactions between the substrate and functional groups of the ligands, and hydroformylation catalysis in molecular cages.

8.
Chemistry ; 23(59): 14769-14777, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28608592

RESUMEN

Unprecedented regioselectivity to the branched aldehyde product in the hydroformylation of propene was attained on embedding a rhodium complex in supramolecular assembly L2, formed by coordination-driven self-assembly of tris(meta-pyridyl)phosphine and zinc(II) porpholactone. The design of cage L2 is based on the ligand-template approach, in which the ligand acts as a template for cage formation. Previously, first-generation cage L1, in which zinc(II) porphyrin units were utilized instead of porpholactones, was reported. Binding studies demonstrate that the association constant for the formation of second-generation cage L2 is nearly an order of magnitude higher than that of L1. This strengthened binding allows cage L2 to remain intact in polar and industrially relevant solvents. As a consequence, the unprecedented regioselectivity for branched aldehyde products can be maintained in polar and coordinating solvents by using the second-generation assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...