Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10875, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740845

RESUMEN

Three-dimensional information is essential for a proper understanding of the healing potential of the menisci and their overall role in the knee joint. However, to date, the study of meniscal vascularity has relied primarily on two-dimensional imaging techniques. Here we present a method to elucidate the intricate 3D meniscal vascular network, revealing its spatial arrangement, connectivity and density. A polymerizing contrast agent was injected into the femoral artery of human cadaver legs, and the meniscal microvasculature was examined using micro-computed tomography at different levels of detail and resolution. The 3D vascular network was quantitatively assessed in a zone-base analysis using parameters such as diameter, length, tortuosity, and branching patterns. The results of this study revealed distinct vascular patterns within the meniscus, with the highest vascular volume found in the outer perimeniscal zone. Variations in vascular parameters were found between the different circumferential and radial meniscal zones. Moreover, through state-of-the-art 3D visualization using micro-CT, this study highlighted the importance of spatial resolution in accurately characterizing the vascular network. These findings, both from this study and from future research using this technique, improve our understanding of microvascular distribution, which may lead to improved therapeutic strategies.


Asunto(s)
Imagenología Tridimensional , Microvasos , Microtomografía por Rayos X , Humanos , Imagenología Tridimensional/métodos , Microvasos/diagnóstico por imagen , Microtomografía por Rayos X/métodos , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/irrigación sanguínea , Menisco/diagnóstico por imagen , Masculino , Cadáver , Femenino
2.
J Control Release ; 358: 420-438, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37121513

RESUMEN

Efficient and reproducible colonic drug delivery remains elusive. The aim of this study was to demonstrate specific colonic delivery in vivo in domestic pigs with a novel tablet formulation based on a dual release control concept using 5-aminosalicylic acid (5-ASA) and caffeine as drug substances. The developed controlled colonic release (CCR) tablet formulation employs a pH-sensitive coating based on Eudragit® FS 30 D to prevent drug release in the upper gastrointestinal tract, and a xyloglucan-based matrix to inhibit drug release after coating removal in the small intestine and to allow microbiome-triggered drug release by enzymatic action in the colon. CCR tablets were administered to domestic pigs and plasma concentration data was analyzed by physiologically based pharmacokinetic modeling to estimate absorbed amounts from small and large intestine and in vivo drug release rates by model-dependent deconvolution using immediate release (IR) tablets and intravenous solutions as reference. Peak concentration times (tmax) and values (cmax) of CCR 5-ASA and caffeine tablets indicated strongly delayed drug absorption and the deduced absorbed amount as a function of time confirmed absorption overwhelmingly from the large intestine. The microbially cleaved marker molecule sulfasalazine administered alone or together with caffeine in CCR tablets reported, in combination with telemetry measurements, gastrointestinal transit times and site of absorption. Drug release from CCR tablets was inferred to take place predominantly at the site of absorption at a release rate of caffeine that was much larger in the colon than in the small intestine indicating enzymatically triggered release by the colonic microbiome. Xyloglucanase activity in rectal and cecal samples was consistent with release data and compound recovery in fecal droppings was consistent with 5-ASA bioavailability. The results provide evidence that the developed formulation can prevent premature drug release and provide targeted colonic drug delivery. Clinical relevance based on the comparability between pig and man is discussed.


Asunto(s)
Cafeína , Sus scrofa , Porcinos , Animales , Sistemas de Liberación de Medicamentos , Comprimidos , Preparaciones de Acción Retardada , Colon , Mesalamina
3.
J Biomed Opt ; 26(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34519191

RESUMEN

SIGNIFICANCE: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2 µm is not trivial. AIM: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-µm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. APPROACH: In our study, various optical fibers with low attenuation (λ = 2.94 µm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. RESULTS: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82 ± 0.99 mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. CONCLUSIONS: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Óxido de Aluminio , Animales , Endoscopios , Fibras Ópticas , Ovinos
4.
Artículo en Inglés | MEDLINE | ID: mdl-32318555

RESUMEN

Intracranial aneurysms are increasingly being treated with endovascular therapy, namely coil embolization. Despite being minimally invasive, partial occlusion and recurrence are more frequent compared to open surgical clipping. Therefore, an alternative treatment is needed, ideally combining minimal invasiveness and long-term efficiency. Herein, we propose such an alternative treatment based on an injectable, radiopaque and photopolymerizable polyethylene glycol dimethacrylate hydrogel. The rheological measurements demonstrated a viscosity of 4.86 ± 1.70 mPa.s, which was significantly lower than contrast agent currently used in endovascular treatment (p = 0.42), allowing the hydrogel to be injected through 430 µm inner diameter microcatheters. Photorheology revealed fast hydrogel solidification in 8 min due to the use of a new visible photoinitiator. The addition of an iodinated contrast agent in the precursor contributed to the visibility of the precursor injection under fluoroscopy. Using a customized light-conducting microcatheter and illumination module, the hydrogel was implanted in an in vitro silicone aneurysm model. Specifically, in situ fast and controllable injection and photopolymerization of the developed hydrogel is shown to be feasible in this work. Finally, the precursor and the polymerized hydrogel exhibit no toxicity for the endothelial cells. Photopolymerizable hydrogels are expected to be promising candidates for future intracranial aneurysm treatments.

5.
Front Bioeng Biotechnol ; 8: 619858, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33553124

RESUMEN

An alternative intracranial aneurysm embolic agent is emerging in the form of hydrogels due to their ability to be injected in liquid phase and solidify in situ. Hydrogels have the ability to fill an aneurysm sac more completely compared to solid implants such as those used in coil embolization. Recently, the feasibility to implement photopolymerizable poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels in vitro has been demonstrated for aneurysm application. Nonetheless, the physical and mechanical properties of such hydrogels require further characterization to evaluate their long-term integrity and stability to avoid implant compaction and aneurysm recurrence over time. To that end, molecular weight and polymer content of the hydrogels were tuned to match the elastic modulus and compliance of aneurysmal tissue while minimizing the swelling volume and pressure. The hydrogel precursor was injected and photopolymerized in an in vitro aneurysm model, designed by casting polydimethylsiloxane (PDMS) around 3D printed water-soluble sacrificial molds. The hydrogels were then exposed to a fatigue test under physiological pulsatile flow, inducing a combination of circumferential and shear stresses. The hydrogels withstood 5.5 million cycles and no significant weight loss of the implant was observed nor did the polymerized hydrogel protrude or migrate into the parent artery. Slight surface erosion defects of 2-10 µm in depth were observed after loading compared to 2 µm maximum for non-loaded hydrogels. These results show that our fine-tuned photopolymerized hydrogel is expected to withstand the physiological conditions of an in vivo implant study.

6.
J Neurosurg ; : 1-14, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31881533

RESUMEN

OBJECTIVE: Intracranial aneurysms (IAs) are more often diagnosed in women. Hormones and vessel geometry, which influences wall shear stress, may affect pathophysiological processes of the arterial wall. Here, the authors investigated sex-related differences in the remodeling of the aneurysm wall and in intraluminal thrombus resolution. METHODS: A well-characterized surgical side-wall aneurysm model was used in female, male, and ovariectomized rats. Decellularized grafts were used to model highly degenerated and decellularized IA walls and native grafts to model healthy IA walls. Aneurysm growth and thrombus composition were analyzed at 1, 7, 14, and 28 days. Sex-related differences in vessel wall remodeling were compared with human IA dome samples of men and pre- and postmenopausal women. RESULTS: At 28 days, more aneurysm growth was observed in ovariectomized rats than in males or non-ovariectomized female rats. The parent artery size was larger in male rats than in female or ovariectomized rats, as expected. Wall inflammation increased over time in all groups and was most severe in the decellularized female and ovariectomized groups at 28 days compared with the male group. Likewise, in these groups the most elastin fragmentation was seen at 28 days. In female rats, on days 1, 7, and 14, the intraluminal thrombus was mainly composed of red blood cells and fibrin. On days 14 and 28, macrophage and smooth muscle cell invasion inside the thrombus was shown, leading to the removal of red blood cells and deposition of collagen and elastin. On days 14 and 28, similar profiles of thrombus reorganization were observed in male and ovariectomized female rats. However, collagen content in thrombi and vessel wall macrophage content were higher in aneurysms of male rats at 28 days than in those of female rats. On day 28, thrombus coverage by endothelial cells was lower in ovariectomized than in female or male rats. Finally, analysis of human IA domes showed that endothelial cell coverage was lower in men and postmenopausal women than in younger women. CONCLUSIONS: Aneurysm growth and intraluminal thrombus resolution show sex-dependent differences. While certain processes (endothelial cell coverage and collagen deposition) point to a strong hormonal dependence, others (wall inflammation and aneurysm growth) seem to be influenced by both hormones and parent artery size.

7.
Knee ; 25(5): 765-773, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30057249

RESUMEN

BACKGROUND: Bone tunnel widening after anterior cruciate ligament (ACL) reconstruction is a known complication that can lead to graft failure. Subsequent revision surgery typically involves a two-stage procedure. The aim of this study was to test a novel autologous tendon graft retaining muscle tissue combined with Human Recombinant Bone Morphogenetic Protein-2 (rh-BMP-2) leading to rapid ossification of the muscle tissue, simultaneously replenishing bone stock and producing a mechanically stable bone-tendon insertion. METHODS: In 12 skeletally mature New Zealand rabbits, the ACL was resected and oversized bone tunnels were drilled to model tunnel widening. The ipsilateral semitendinosus muscle-tendon graft was harvested and folded twice. Muscle tissue was removed in the middle third but retained at both distal ends. One side was wrapped in a collagen sponge loaded with rh-BMP-2 while the other end was used as its own control. RESULTS: All animals were euthanized after six weeks. Micro-computed tomography (micro-CT) was used to analyze bone formation in 12 animals, with additional biomechanical testing to failure and histology performed for six animals each. Micro-CT showed that bone densities were higher by a factor of 2.4 in treated graft ends compared with their controls. Biomechanical testing showed a mean overall failure load of 37.5 N. Histology showed that the trabecular bone surrounding the implant was significantly (P = 0.0087) thicker on the treated (85.5 µm) compared with the control side (68.2 µm). CONCLUSIONS: We conclude that a semitendinosus graft retaining the muscle tissue stimulated by recombinant Bone Morphogenetic Protein-2 (BMP-2) allows robust osseointegration of the graft within an oversized bone tunnel in an animal model.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Proteína Morfogenética Ósea 2/uso terapéutico , Músculos Isquiosurales/trasplante , Oseointegración , Tendones/trasplante , Factor de Crecimiento Transformador beta/uso terapéutico , Animales , Densidad Ósea , Modelos Animales de Enfermedad , Conejos , Proteínas Recombinantes/uso terapéutico , Trasplante Autólogo , Microtomografía por Rayos X
8.
J Orthop Res ; 36(9): 2340-2348, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29575173

RESUMEN

Sheep hips have a natural non-spherical head similar to a cam-type deformity in human beings. By performing an intertrochanteric varus osteotomy, cam-type femoroacetabular impingement can be induced experimentally. In sheep, the aspherical portion is located superiorly-exactly matching the region where the superior retinacular vessels enter the femoral head-neck junction in human beings. In order to fully exploit the potential of this experimental FAI model, a safe osteochondroplasty of the superior asphericity would need to be done without the risk of avascular necrosis. The aim of this study was to describe the vascular anatomy of the femoral head in sheep from the aorta to the retinacular vessels in order to perform safe femoral osteochondroplasty of the superior femoral asphericity in sheep. Sixty-two ovine hips were analyzed using CT angiography (30 hips), post mortem intravascular latex injection (6 hips), vascular corrosion casting (6 hips), and analysis of the distribution of vascular foramina around the femoral head-neck junction in macerated ovine femora (20 hips). The ovine femoral head receives its blood supply from anterior retinacular arteries from the lateral femoral circumflex artery, and from posterior retinacular arteries from the medial femoral circumflex artery. The superior aspherical portion is free of vessels. Detailed knowledge about vascular anatomy of sheep hips is of clinical significance since it allows to perform osteochondroplasty of the superior aspherical portion in the experimental ovine FAI model safely without the risk of osteonecrosis. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2340-2348, 2018.


Asunto(s)
Pinzamiento Femoroacetabular/cirugía , Cabeza Femoral/irrigación sanguínea , Cabeza Femoral/cirugía , Cuello Femoral/cirugía , Animales , Aorta/patología , Aorta Abdominal/anatomía & histología , Angiografía por Tomografía Computarizada , Modelos Animales de Enfermedad , Femenino , Pinzamiento Femoroacetabular/fisiopatología , Arteria Femoral , Cabeza Femoral/fisiopatología , Cuello Femoral/anatomía & histología , Osteonecrosis , Osteotomía , Pelvis/irrigación sanguínea , Ovinos
9.
Tissue Eng Part A ; 22(21-22): 1286-1295, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27633049

RESUMEN

Nasal chondrocytes (NC) were previously demonstrated to remain viable and to participate in the repair of articular cartilage defects in goats. Here, we investigated critical features of tissue-engineered grafts generated by NC in this large animal model, namely cell retention at the implantation site, architecture and integration with adjacent tissues, and effects on subchondral bone changes. In this study, isolated autologous goat NC (gNC) and goat articular chondrocytes (gAC, as control) were expanded, green fluorescent protein-labelled and seeded on a type I/III collagen membrane. After chondrogenic differentiation, tissue-engineered grafts were implanted into chondral defects (6 mm in diameter) in the stifle joint for 3 or 6 months. At the time of explantation, surrounding tissues showed no or very low (only in the infrapatellar fat pad <0.32%) migration of the grafted cells. In repair tissue, gNC formed typical structures of articular cartilage, such as flattened cells at the surface and column-like clusters in the middle layers. Semi-quantitative histological evaluation revealed efficient integration of the grafted tissues with the adjacent native cartilage and underlying subchondral bone. A significantly increased subchondral bone area, as a sign for the onset of osteoarthritis, was observed following treatment of cartilage defects with gAC-, but not with gNC-grafts. Our results reinforce the use of NC-based engineered tissue for articular cartilage repair and preliminarily indicate their potential for the treatment of early osteoarthritic defects.


Asunto(s)
Cartílago Articular , Condrocitos/metabolismo , Tabique Nasal , Regeneración , Ingeniería de Tejidos , Animales , Cartílago Articular/lesiones , Cartílago Articular/fisiología , Condrocitos/citología , Condrocitos/trasplante , Femenino , Cabras , Tabique Nasal/citología , Tabique Nasal/metabolismo
10.
Eur J Pharm Biopharm ; 85(1): 107-18, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23958322

RESUMEN

The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Fibroínas/uso terapéutico , Regeneración Tisular Dirigida , Húmero/cirugía , Tibia/cirugía , Andamios del Tejido , Animales , Animales Endogámicos , Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Adhesión Celular , Proliferación Celular , Fibroínas/efectos adversos , Fibroínas/química , Fibroínas/metabolismo , Reacción a Cuerpo Extraño/prevención & control , Células Gigantes de Cuerpo Extraño/inmunología , Células Gigantes de Cuerpo Extraño/metabolismo , Regeneración Tisular Dirigida/efectos adversos , Húmero/citología , Húmero/lesiones , Húmero/fisiología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ensayo de Materiales , Neovascularización Fisiológica , Osteocitos/citología , Porosidad , Oveja Doméstica , Tibia/citología , Tibia/lesiones , Tibia/fisiología , Andamios del Tejido/efectos adversos , Andamios del Tejido/química
11.
Open Orthop J ; 5: 63-71, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21566736

RESUMEN

BACKGROUND: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. MATERIALS AND METHODS: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. RESULTS: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. CONCLUSIONS: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.

12.
Open Orthop J ; 2: 66-78, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-19506701

RESUMEN

Skeletal defects may result from traumatic, infectious, congenital or neoplastic processes and are considered to be a challenge for reconstructive surgery. Although the autologous bone graft is still the "gold standard", there is continuing demand for bone substitutes because of associated disadvantages, such as limited supply and potential donor side morbidity [1]. This is not only true for indications in orthopedic and craniomaxillofacial surgeries, but also in repairing endodontic defects and in dental implantology.Before clinical use all new bone substitute materials have to be validated for their osseoconductive and - depending on the composition of the material also -inductive ability, as well as for their long-term biocompatibility in bone. Serving this purpose various bone healing models to test osteocompatibility and inflammatory potential of a novel material on one hand and, on the other hand, non-healing osseous defects to assess the healing potential of a bone substitute material have been developed. Sometimes the use of more than one implantation site can be helpful to provide a wide range of information about a new material [2].Important markers for biocompatibility and inflammatory responses are the cell types appearing after the implantation of foreign material. There, especially the role of foreign body giant cells (FBGC) is discussed controversial in the pertinent literature, such that it is not clear whether their presence marks an incompatibility of the biomaterial, or whether it belongs to a normal degradation behavior of modern, resorbable biomaterials.This publication is highlighting the different views currently existing about the function of FBGC that appear in response to biomaterials at the implantation sites. A short overview of the general classes of biomaterials, where FBGC may appear as cellular response, is added for clarity, but may not be complete.

13.
BMC Musculoskelet Disord ; 7: 67, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16911787

RESUMEN

BACKGROUND: The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. METHODS: A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. RESULTS: This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. CONCLUSION: This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.


Asunto(s)
Materiales Biocompatibles/farmacología , Sustitutos de Huesos/farmacología , Huesos/fisiología , Ensayo de Materiales , Modelos Animales , Animales , Huesos/diagnóstico por imagen , Huesos/patología , Diáfisis/fisiología , Epífisis/fisiología , Femenino , Fémur/fisiología , Húmero/fisiología , Oseointegración , Radiografía , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA