Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 112: 129939, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218407

RESUMEN

Autophagy is a catabolic process that was described to play a critical role in advanced stages of cancer, wherein it maintains tumor cell homeostasis and growth by supplying nutrients. Autophagy is also described to support alternative cellular trafficking pathways, providing a non-canonical autophagy-dependent inflammatory cytokine secretion mechanism. Therefore, autophagy inhibitors have high potential in the treatment of cancer and acute inflammation. In our study, we identified compound 1 as an inhibitor of the ATG12-ATG3 protein-protein interaction. We focused on the systematic modification of the original hit 1, a casein kinase 2 (CK2) inhibitor, to find potent disruptors of ATG12-ATG3 protein-protein interaction. A systematic modification of the hit structure led us to a wide plethora of compounds that maintain its ATG12-ATG3 inhibitory activity, which could act as a viable starting point to design new compounds with diverse therapeutic applications.

2.
Autophagy ; 19(8): 2372-2385, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37184247

RESUMEN

Macroautophagy/autophagy is a catabolic process by which cytosolic content is engulfed, degraded and recycled. It has been implicated as a critical pathway in advanced stages of cancer, as it maintains tumor cell homeostasis and continuous growth by nourishing hypoxic or nutrient-starved tumors. Autophagy also supports alternative cellular trafficking pathways, providing a mechanism of non-canonical secretion of inflammatory cytokines. This opens a significant therapeutic opportunity for using autophagy inhibitors in cancer and acute inflammatory responses. Here we developed a high throughput compound screen to identify inhibitors of protein-protein interaction (PPI) in autophagy, based on the protein-fragment complementation assay (PCA). We chose to target the ATG12-ATG3 PPI, as this interaction is indispensable for autophagosome formation, and the analyzed structure of the interaction interface predicts that it may be amenable to inhibition by small molecules. We screened 41,161 compounds yielding 17 compounds that effectively inhibit the ATG12-ATG3 interaction in the PCA platform, and which were subsequently filtered by their ability to inhibit autophagosome formation in viable cells. We describe a lead compound (#189) that inhibited GFP-fused MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) puncta formation in cells with IC50 value corresponding to 9.3 µM. This compound displayed a selective inhibitory effect on the growth of autophagy addicted tumor cells and inhibited secretion of IL1B/IL-1ß (interleukin 1 beta) by macrophage-like cells. Compound 189 has the potential to be developed into a therapeutic drug and its discovery documents the power of targeting PPIs for acquiring specific and selective compound inhibitors of autophagy.Abbreviations: ANOVA: analysis of variance; ATG: autophagy related; CQ: chloroquine; GFP: green fluorescent protein; GLuc: Gaussia Luciferase; HEK: human embryonic kidney; IL1B: interleukin 1 beta; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; PCA: protein-fragment complementation assay; PDAC: pancreatic ductal adenocarcinoma; PMA: phorbol 12-myristate 13-acetate; PPI: protein-protein interaction. VCL: vinculin.


Asunto(s)
Autofagia , Neoplasias Pancreáticas , Humanos , Interleucina-1beta/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Fluorescentes Verdes/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteína 12 Relacionada con la Autofagia
3.
Autophagy ; 15(3): 438-452, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30238850

RESUMEN

Macroautophagy/autophagy is a conserved catabolic process that maintains cellular homeostasis under basal growth and stress conditions. In cancer, autophagy can either prevent or promote tumor growth, at early or advanced stages, respectively. We screened public databases to identify autophagy-related somatic mutations in cancer, using a computational approach to identify cancer mutational target sites, employing exact statistics. The top significant hit was a missense mutation (Y113C) in the MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) protein, which occurred at a significant frequency in cancer, and was detected in early stages in primary tumors of patients with known tumor lineage. The mutation reduced the formation of GFP-LC3B puncta and attenuated LC3B lipidation during Torin1-induced autophagy. Its effect on the direct physical interaction of LC3B with each of the 4 proteins that control its maturation or lipidation was tested by applying a protein-fragment complementation assay and co-immunoprecipitation experiments. Interactions with ATG4A and ATG4B proteases were reduced, yet without perturbing the cleavage of mutant LC3B. Most importantly, the mutation significantly reduced the interaction with the E1-like enzyme ATG7, but not the direct interaction with the E2-like enzyme ATG3, suggesting a selective perturbation in the binding of LC3B to some of its partner proteins. Structure analysis and molecular dynamics simulations of LC3B protein and its mutant suggest that the mutation changes the conformation of a loop that has several contact sites with ATG4B and the ATG7 homodimer. We suggest that this loss-of-function mutation, which attenuates autophagy, may promote early stages of cancer development.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/genética , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/química , Proteína 7 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Biología Computacional , Cisteína Endopeptidasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Mutación Missense , Naftiridinas/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA