Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Genet ; 14: 1170571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790705

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDAC) is a very lethal disease that typically presents at an advanced stage and is non-compliant with most treatments. Recent technologies have helped delineate associated molecular subtypes and genetic variations yielding important insights into the pathophysiology of this disease and having implications for the identification of new therapeutic targets. Drug repurposing has been evaluated as a new paradigm in oncology to accelerate the application of approved or failed target-specific molecules for the treatment of cancer patients. This review focuses on the impact of molecular subtypes on key genomic alterations in PDAC, and the progress made thus far. Importantly, these alterations are discussed in light of the potential role of drug repurposing in PDAC.

2.
Front Genet ; 14: 1087432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662839

RESUMEN

The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.

3.
Microorganisms ; 11(6)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37375113

RESUMEN

The human gastrointestinal tract (GIT) is home to an abundance of diverse microorganisms, and the balance of this microbiome plays a vital role in maintaining a healthy GIT. The obstruction of the flow of bile into the duodenum, resulting in obstructive jaundice (OJ), has a major impact on the health of the affected individual. This study sought to identify changes in the duodenal microbiota in South African patients with OJ compared to those without this disorder. Mucosal biopsies were taken from the duodenum of nineteen jaundiced patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) and nineteen control participants (non-jaundiced patients) undergoing gastroscopy. DNA extracted from the samples was subjected to 16S rRNA amplicon sequencing using the Ion S5 TM sequencing platform. Diversity metrics and statistical correlation analyses with the clinical data were performed to compare duodenal microbial communities in both groups. Differences in the mean distribution of the microbial communities in the jaundiced and non-jaundiced samples were observed; however, this difference did not reach statistical significance. Of note, there was a statistically significant difference between the mean distributions of bacteria comparing jaundiced patients with cholangitis to those without (p = 0.0026). On further subset analysis, a significant difference was observed between patients with benign (Cholelithiasis) and malignant disease, namely, head of pancreas (HOP) mass (p = 0.01). Beta diversity analyses further revealed a significant difference between patients with stone and non-stone related disease when factoring in the Campylobacter-Like Organisms (CLO) test status (p = 0.048). This study demonstrated a shift in the microbiota in jaundiced patients, especially considering some underlying conditions of the upper GI tract. Future studies should aim to verify these findings in a larger cohort.

4.
Adv Exp Med Biol ; 1436: 167-185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37243923

RESUMEN

In the past few years, development of approved drug candidates has improved the disease management of multiple myeloma (MM). However, due to drug resistance, some of the patients do not respond positively, while some of the patients acquire drug resistance, thereby these patients eventually relapse. Hence, there are no other therapeutic options for multiple myeloma patients. Therefore, this necessitates a precision-based approach to multiple myeloma therapy. The use of patient's samples to test drug sensitivity to increase efficacy and reduce treatment-related toxicities is the goal of functional precision medicine. Platforms such as high-throughput-based drug repurposing technology can be used to select effective single drug and drug combinations based on the efficacy and toxicity studies within a time frame of couple of weeks. In this article, we describe the clinical and cytogenetic features of MM. We highlight the various treatment strategies and elaborate on the role of high-throughput screening platforms in a precision-based approach towards clinical treatment.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Ensayos Analíticos de Alto Rendimiento , Recurrencia Local de Neoplasia , Detección Precoz del Cáncer
5.
Clin Proteomics ; 20(1): 8, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36855072

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) is a lethal cancer with a poor prognosis. The lack of specific and sensitive biomarkers results in delayed diagnosis with most patients presenting at late stages of the disease. Furthermore, there is little known about the molecular mechanisms associated with GBC, especially in patients of African ancestry. This study aimed to determine dysregulated proteins in South African GBC patients to identify potential mechanisms of the disease progression and plausible biomarkers. METHODS: Tissues (27 GBC, 13 Gallstone disease, and 5 normal tissues) and blood plasma (54 GBC and 73 Benign biliary pathology) were obtained from consenting patients. Protein extraction was performed on all tissues and liquid chromatography-mass spectrometry was used for proteomic profiling. A project-specific spectral library was built using the Pulsar search algorithm. Principal component and Spearman's rank correlation analyses were performed using PAST (V4.07b). Pathway and Network analyses were conducted using REACTOME (v3.7) and stringAPP (v1.7.0), respectively. RESULTS: In the tissue sample group, there were 62 and 194 dysregulated proteins in GBC compared to normal and gallstone groups, respectively. In the plasma group, there were 33 altered proteins in GBC compared to the benign biliary pathology group. We found 9 proteins (APOA1, APOA2, RET4, TTR, HEMO, HBB, HBA, PIGR, and APOE) to be commonly dysregulated in both tissue and plasma. Furthermore, a subset analysis demonstrated that 2 proteins, S100A8 and S100A9, were downregulated in GBC patients with GD history compared to those without. Pathway analysis showed that the dysregulated proteins in GBC patients were enriched in pathways involved in smooth muscle contraction, metabolism, ECM organization, and integrin cell surface interactions. CONCLUSION: The identified dysregulated proteins help in understanding GBC molecular mechanisms in our patient group. Furthermore, the alteration of specific proteins in both tissue and plasma samples suggests their potential utility as biomarkers of GBC in this sample cohort.

6.
Polymers (Basel) ; 15(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679328

RESUMEN

Pancreatic cancer (PC) is one of the most aggressive solid malignancies with poor treatment response and low survival rates. Herbal medicines such as betulinic acid (BA) have shown potential in treating various solid tumours, but with limitations that can be circumvented by polymer-drug conjugation. Polyethylene glycol-BA (PEG-BA) polymer-drug conjugate has previously shown selective anticancer activity against PC cells. Here, we elucidate the mechanism of cell death and the cell death pathway, anti-inflammatory and antioxidant activities of PEG-BA. PEG-BA induced apoptotic cell death by arresting MIA-PaCa-2 cells in the Sub-G1 phase of the cell cycle compared with BA and untreated cells (39.50 ± 5.32% > 19.63 ± 4.49% > 4.57 ± 0.82%). NFκB/p65 protein expression was moderately increased by PEG-BA (2.70 vs. 3.09 ± 0.42 ng/mL; p = 0.1521). However, significant (p < 0.05) overexpression of the proapoptotic genes TNF (23.72 ± 1.03) and CASPASE 3 (12,059.98 ± 1.74) compared with untreated cells was notable. The antioxidant potential of PEG-BA was greater (IC50 = 15.59 ± 0.64 µM) compared with ascorbic acid (25.58 ± 0.44 µM) and BA-only (>100 µM) and further confirmed with the improved reduction of hydroperoxide levels compared with BA-only (518.80 ± 25.53 µM vs. 542.43 ± 9.70 µM). In conclusion, PEG-BA activated both the intrinsic and extrinsic pathways of apoptosis and improved antioxidant activities in PC cells, suggesting enhanced anticancer activity upon conjugation.

7.
Adv Exp Med Biol ; 1410: 115-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36289161

RESUMEN

Drug resistance in leukaemia is a major problem that needs to be addressed. Precision medicine provides an avenue to reduce drug resistance through a personalised treatment plan. It has helped to better stratify patients based on their molecular profile and therefore improved the sensitivity of patients to a given therapeutic regimen. However, therapeutic options are still limited for patients who have already been subjected to many lines of chemotherapy. The process of designing and developing new drugs requires significant resources, including money and time. Drug repurposing has been explored as an alternative to identify effective drug(s) that could be used to target leukaemia and lessen the burden of drug resistance. The drug repurposing process usually includes preclinical studies with drug screening and clinical trials before approval. Although most of the repurposed drugs that have been identified are generally safe for leukaemia treatment, they seem not to be good candidates for monotherapy but could have value in combination with other drugs, especially for patients who have exhausted therapeutic options. In this review, we highlight precision medicine in leukaemia and the role of drug repurposing. Specifically, we discuss the several screening methods via chemoinformatic, in vitro, and ex vivo that have facilitated and accelerated the drug repurposing process.


Asunto(s)
Reposicionamiento de Medicamentos , Leucemia , Medicina de Precisión , Humanos , Reposicionamiento de Medicamentos/métodos , Medicina de Precisión/métodos , Leucemia/terapia , Ensayos de Selección de Medicamentos Antitumorales/métodos
8.
World J Gastrointest Pathophysiol ; 12(6): 115-133, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34877026

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disease, which presents with epigastric pain and is clinically diagnosed by amylase and lipase three times the upper limit of normal. The 2012 Atlanta classification stratifies the severity of AP as one of three risk categories namely, mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP). Challenges in stratifying AP upon diagnosis suggest that a better understanding of the underlying complex pathophysiology may be beneficial. AIM: To identify the role of the chemokine receptor 8 (CCR8), expressed by T-helper type-2 Lymphocytes and peritoneal macrophages, and its possible association to Interleukin (IL)-6 and AP stratification. METHODS: This study was a prospective case-control study. A total of 40 patients were recruited from the Chris Hani Baragwanath Academic Hospital and the Charlotte Maxeke Johannesburg Academic Hospital. Bioassays were performed on 29 patients (14 MAP, 11 MSAP, and 4 SAP) and 6 healthy controls as part of a preliminary study. A total of 12 mL of blood samples were collected at Day (D) 1, 3, 5, and 7 post epigastric pain. Using multiplex immunoassay panels, real-time polymerase chain reaction (qRT-PCR) arrays, and multicolour flow cytometry analysis, immune response-related proteins, genes, and cells were profiled respectively. GraphPad Prism™ software and fold change (FC) analysis was used to determine differences between the groups. P<0.05 was considered significant. RESULTS: The concentration of IL-6 was significantly different at D3 post epigastric pain in both the MAP group and MSAP group with P = 0.001 and P = 0.013 respectively, in a multiplex assay. When a FC of 2 was applied to identify differentially expressed genes using RT2 Profiler, CCR8 was shown to increase steadily with disease severity from MAP (1.33), MSAP (38.28) to SAP (1172.45) median FC. Further verification studies using RT-PCR showed fold change increases of CCR8 in MSAP and SAP ranging from 1000 to 1000000 times when represented as Log10, compared to healthy control respectively at D3. The findings also showed differing lymphocyte and monocyte cell frequency between the groups. With monocyte population frequency as high as 70% in MSAP at D3. CONCLUSION: The higher levels of CCR8 and IL-6 in the severe patients and immune cell differences compared to MAP and controls provide an avenue for exploring AP stratification to improve management.

9.
Metabolites ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34677378

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a characteristic dysregulated metabolism. Abnormal clinicopathological features linked to defective metabolic and inflammatory response pathways can induce PDAC development and progression. In this study, we investigated the metabolites and lipoproteins profiles of PDAC patients of African ancestry. Nuclear Magnetic Resonance (NMR) spectroscopy was conducted on serum obtained from consenting individuals (34 PDAC, 6 Chronic Pancreatitis, and 6 healthy participants). Seventy-five signals were quantified from each NMR spectrum. The Liposcale test was used for lipoprotein characterization. Spearman's correlation and Kapan Meier tests were conducted for correlation and survival analyses, respectively. In our patient cohort, the results demonstrated that levels of metabolites involved in the glycolytic pathway increased with the tumour stage. Raised ethanol and 3-hydroxybutyrate were independently correlated with a shorter patient survival time, irrespective of tumour stage. Furthermore, increased levels of bilirubin resulted in an abnormal lipoprotein profile in PDAC patients. Additionally, we observed that the levels of a panel of metabolites (such as glucose and lactate) and lipoproteins correlated with those of inflammatory markers. Taken together, the metabolic phenotype can help distinguish PDAC severity and be used to predict patient survival and inform treatment intervention.

10.
Front Oncol ; 11: 683788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195085

RESUMEN

Pancreatic cancer is one of the most deadly cancers, ranking amongst the top leading cause of cancer related deaths in developed countries. Features such as dense stroma microenvironment, abnormal signaling pathways, and genetic heterogeneity of the tumors contribute to its chemoresistant characteristics. Amongst these features, growth factors have been observed to play crucial roles in cancer cell survival, progression, and chemoresistance. Here we review the role of the individual growth factors in pancreatic cancer chemoresistance. Importantly, the interplay between the tumor microenvironment and chemoresistance is explored in the context of pivotal role played by growth factors. We further describe current and future potential therapeutic targeting of these factors.

11.
Life (Basel) ; 11(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063891

RESUMEN

Drug delivery systems involving polymer therapeutics enhance drug potency by improved solubility and specificity and may assist in circumventing chemoresistance in pancreatic cancer (PC). We compared the effectiveness of the naturally occurring drug, betulinic acid (BA), alone and in a polymer conjugate construct of polyethylene glycol (PEG), (PEG-BA), on PC cells (MIA PaCa-2), a normal cell line (Vero) and on peripheral blood mononuclear cells (PBMCs). PEG-BA, was tested for its effect on cell death, immunomodulation and chemoresistance-linked signalling pathways. The conjugate was significantly more toxic to PC cells (p < 0.001, IC50 of 1.35 ± 0.11 µM) compared to BA (IC50 of 12.70 ± 0.34 µM), with a selectivity index (SI) of 7.28 compared to 1.4 in Vero cells. Cytotoxicity was confirmed by increased apoptotic cell death. PEG-BA inhibited the production of IL-6 by 4-5.5 fold compared to BA-treated cells. Furthermore, PEG-BA treatment of MIA PaCa-2 cells resulted in the dysregulation of crucial chemoresistance genes such as WNT3A, TXNRD1, SLC2A1 and GATA3. The dysregulation of chemoresistance-associated genes and the inhibition of cytokines such as IL-6 by the model polymer construct, PEG-BA, holds promise for further exploration in PC treatment.

12.
Prog Mol Biol Transl Sci ; 180: 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33934833

RESUMEN

In this chapter, we delineated the methods of CRISPR technology that has been used for the development of engineered insect cell line. We elaborated on how CRISPR/Cas9 genome editing in Drosophila melanogaster, Bombyx mori, Spodoptera frugiperda (Sf9 and Sf21), and Mosquitoes enabled the use of model or non-model insect system in various biological and medical applications. Also, the application of synthetic baculovirus genome along with CRISPR/Cas9 vector system to enable genome editing of insect cell systems for treatment of communicable and non-communicable diseases.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila melanogaster , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Insectos , Tecnología
13.
Adv Exp Med Biol ; 1326: 47-53, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33629259

RESUMEN

One of the critical Global challenges in achieving the UN Sustainable Development Goals 3 Good Health and Well Being is optimizing drug discovery and translational research for unmet medical need in both communicable and non-communicable diseases. Recently, the WHO reports there has been a shift from communicable diseases to non-communicable diseases with respect to being the leading cause of death globally and particularly in low- and middle-income countries such as South Africa. Hence, there is current drive to establish functional precision medicine program that addresses the unmet medical need using high throughput drug sensitivity and drug repurposing platform. Here, this paper serves as a perspective to showcase the recent development in high throughput drug sensitivity screening platform for the cancer precision medicine. We also elaborate on the benefit and applications of high-throughput drug screening platform for Precision Medicine. From a future perspective, this paper aims to showcase the possibility to integrate existing high-throughput drug sensitivity screening platform with the newly developed platform technologies such as microfluidics based single cell drug screening.


Asunto(s)
Neoplasias , Preparaciones Farmacéuticas , Reposicionamiento de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Sudáfrica
14.
Mol Med Rep ; 22(6): 4981-4991, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33174057

RESUMEN

Pancreatic cancer is an aggressive cancer, making it a leading cause of cancer­related deaths. It is characteristically resistant to treatment, which results in low survival rates. In pancreatic cancer, immune cells undergo transitions that can inhibit or promote their functions, enabling treatment resistance and tumor progression. These transitions can be fostered by metabolic pathways that are dysregulated during tumorigenesis. The present review aimed to summarize the different immune cells and their roles in pancreatic cancer. The review also highlighted the individual metabolic pathways in pancreatic cancer and how they enable transitions in immune cells. Finally, the potential of targeting metabolic pathways for effective therapeutic strategies was considered.


Asunto(s)
Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Carcinogénesis , Humanos , Inmunidad , Redes y Vías Metabólicas , Neoplasias Pancreáticas
15.
PLoS One ; 15(10): e0240453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33048956

RESUMEN

Pancreatic cancer accounts for 2.8% of new cancer cases worldwide and is projected to become the second leading cause of cancer-related deaths by 2030. Patients of African ancestry appear to be at an increased risk for pancreatic ductal adenocarcinoma (PDAC), with more severe disease and outcomes. The purpose of this study was to map the proteomic and genomic landscape of a cohort of PDAC patients of African ancestry. Thirty tissues (15 tumours and 15 normal adjacent tissues) were obtained from consenting South African PDAC patients. Optimisation of the sample preparation method allowed for the simultaneous extraction of high-purity protein and DNA for SWATH-MS and OncoArray SNV analyses. We quantified 3402 proteins with 49 upregulated and 35 downregulated proteins at a minimum 2.1 fold change and FDR adjusted p-value (q-value) ≤ 0.01 when comparing tumour to normal adjacent tissue. Many of the upregulated proteins in the tumour samples are involved in extracellular matrix formation (ECM) and related intracellular pathways. In addition, proteins such as EMIL1, KBTB2, and ZCCHV involved in the regulation of ECM proteins were observed to be dysregulated in pancreatic tumours. Downregulation of pathways involved in oxygen and carbon dioxide transport were observed. Genotype data showed missense mutations in some upregulated proteins, such as MYPN, ESTY2 and SERPINB8. Approximately 11% of the dysregulated proteins, including ISLR, BP1, PTK7 and OLFL3, were predicted to be secretory proteins. These findings help in further elucidating the biology of PDAC and may aid in identifying future plausible markers for the disease.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/patología , Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/patología , Polimorfismo de Nucleótido Simple , Proteoma/análisis , Anciano , Anciano de 80 o más Años , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/cirugía , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/cirugía , Pronóstico
16.
Oncol Lett ; 20(3): 2613-2620, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32782579

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer type characterized by dysregulated cell signalling pathways and resistance to treatment. The insulin-like growth factor (IGF) signalling pathway has been identified to have a role in tumour progression and therapy resistance. However, its regulatory roles in PDAC have remained to be fully elucidated. In the present study, dysregulated microRNAs (miRNAs) in PDAC were explored with a focus on those that may be involved in regulating the insulin/IGF signalling pathway. A total of 208 patients were recruited, comprising 112 patients with PDAC, 50 patients with chronic pancreatitis (CP) and 46 subjects as a control group (CG). miRNA-specific quantitative PCR assays were used to measure 300 candidate miRNAs. The Student's t-test was applied to compare miRNA regulation between cancer patients and controls with a false discovery rate correction using Bonferroni-type comparison procedures. The DIANA-mirPath v.3 tool and HMDD v3.0 were used to identify miRNA-mRNA interactions within specific pathways. In patients with PDAC, 42 miRNAs were significantly upregulated and 42 were downregulated compared to the CG (P<0.01). In the PDAC vs. CP analysis, 16 significantly (P<0.01) upregulated and 16 downregulated miRNAs were identified. Of note, members of the let-7 family of miRNAs were downregulated and were indicated to target several components of the insulin receptor (INSR)/IGF pathway, including receptors and binding proteins, for upregulation and thus, may enable the activation of the pathway. Downregulation of the let-7 family may help promote the INSR/IGF pathway in PDAC. It may thus be an effective target for the development of INSR/IGF pathway-specific treatment strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...