Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37110722

RESUMEN

Spinel LiMn2O4 (LMO) is a state-of-the-art cathode material for Li-ion batteries. However, the operating voltage and battery life of spinel LMO needs to be improved for application in various modern technologies. Modifying the composition of the spinel LMO material alters its electronic structure, thereby increasing its operating voltage. Additionally, modifying the microstructure of the spinel LMO by controlling the size and distribution of the particles can improve its electrochemical properties. In this study, we elucidate the sol-gel synthesis mechanisms of two common types of sol-gels (modified and unmodified metal complexes)-chelate gel and organic polymeric gel-and investigate their structural and morphological properties and electrochemical performances. This study highlights that uniform distribution of cations during sol-gel formation is important for the growth of LMO crystals. Furthermore, a homogeneous multicomponent sol-gel, necessary to ensure that no conflicting morphologies and structures would degrade the electrochemical performances, can be obtained when the sol-gel has a polymer-like structure and uniformly bound ions; this can be achieved by using additional multifunctional reagents, namely cross-linkers.

2.
Materials (Basel) ; 14(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921824

RESUMEN

Recently, applications for lithium-ion batteries (LIBs) have expanded to include electric vehicles and electric energy storage systems, extending beyond power sources for portable electronic devices. The power sources of these flexible electronic devices require the creation of thin, light, and flexible power supply devices such as flexile electrolytes/insulators, electrode materials, current collectors, and batteries that play an important role in packaging. Demand will require the progress of modern electrode materials with high capacity, rate capability, cycle stability, electrical conductivity, and mechanical flexibility for the time to come. The integration of high electrical conductivity and flexible buckypaper (oxidized Multi-walled carbon nanotubes (MWCNTs) film) and high theoretical capacity silicon materials are effective for obtaining superior high-energy-density and flexible electrode materials. Therefore, this study focuses on improving the high-capacity, capability-cycling stability of the thin-film Si buckypaper free-standing electrodes for lightweight and flexible energy-supply devices. First, buckypaper (oxidized MWCNTs) was prepared by assembling a free stand-alone electrode, and electrical conductivity tests confirmed that the buckypaper has sufficient electrical conductivity (10-4(S m-1) in LIBs) to operate simultaneously with a current collector. Subsequently, silicon was deposited on the buckypaper via magnetron sputtering. Next, the thin-film Si buckypaper freestanding electrodes were heat-treated at 600 °C in a vacuum, which improved their electrochemical performance significantly. Electrochemical results demonstrated that the electrode capacity can be increased by 27/26 and 95/93 µAh in unheated and heated buckypaper current collectors, respectively. The measured discharge/charge capacities of the USi_HBP electrode were 108/106 µAh after 100 cycles, corresponding to a Coulombic efficiency of 98.1%, whereas the HSi_HBP electrode indicated a discharge/charge capacity of 193/192 µAh at the 100th cycle, corresponding to a capacity retention of 99.5%. In particular, the HSi_HBP electrode can decrease the capacity by less than 1.5% compared with the value of the first cycle after 100 cycles, demonstrating excellent electrochemical stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...