Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(4): 3045-3057, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749163

RESUMEN

Peptides targeting disease-relevant protein-protein interactions are an attractive class of therapeutics covering the otherwise undruggable space between small molecules and therapeutic proteins. However, peptides generally suffer from poor metabolic stability and low membrane permeability. Hence, peptide cyclization has become a valuable approach to develop linear peptide motifs into metabolically stable and potentially cell-permeable cyclic leads. Furthermore, cyclization of side chains, also known as "stapling", can stabilize particular secondary peptide structures. Here, we demonstrate that a comprehensive examination of cyclization strategies in terms of position, chemistry, and length is a prerequisite for the selection of optimal cyclic peptide scaffolds. Our systematic approach identifies cyclic APP dodecamer peptides targeting the phosphotyrosine binding domain of Mint2 with substantially improved affinity. We show that especially all-hydrocarbon stapling provides improved metabolic stability, a significantly stabilized secondary structure and membrane permeability.


Asunto(s)
Precursor de Proteína beta-Amiloide , Péptidos Cíclicos , Ciclización , Péptidos Cíclicos/química , Estructura Secundaria de Proteína , Precursor de Proteína beta-Amiloide/química , Unión Proteica , Fosfotirosina/química
2.
Proc Natl Acad Sci U S A ; 116(14): 7123-7128, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30872479

RESUMEN

The long-chain fatty acid receptor FFAR1/GPR40 binds agonists in both an interhelical site between the extracellular segments of transmembrane helix (TM)-III and TM-IV and a lipid-exposed groove between the intracellular segments of these helices. Molecular dynamics simulations of FFAR1 with agonist removed demonstrated a major rearrangement of the polar and charged anchor point residues for the carboxylic acid moiety of the agonist in the interhelical site, which was associated with closure of a neighboring, solvent-exposed pocket between the extracellular poles of TM-I, TM-II, and TM-VII. A synthetic compound designed to bind in this pocket, and thereby prevent its closure, was identified through structure-based virtual screening and shown to function both as an agonist and as an allosteric modulator of receptor activation. This discovery of an allosteric agonist for a previously unexploited, dynamic pocket in FFAR1 demonstrates both the power of including molecular dynamics in the drug discovery process and that this specific, clinically proven, but difficult, antidiabetes target can be addressed by chemotypes different from existing ligands.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efectos de los fármacos , Sitio Alostérico , Benzofuranos/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Sulfonas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...