Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(26): 30992-31000, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34160204

RESUMEN

Carbon nanotube (CNT) array thermal interface materials (TIMs) are promising candidates for high-performance applications in terms of thermal performance. However, in order to be useful in commercial applications, the reliability of the interfaces is an equally important parameter, which so far has not been thoroughly investigated. In this study, the reliability of CNT array TIMs is investigated through accelerated aging. The roles of CNT array height and substrate configuration are studied for their relative impact on thermal resistance degradation. After aging, the CNT catalyst is analyzed using X-ray photoelectron spectroscopy to evaluate chemical changes. The CNT-catalyst bond appears to degrade during aging but not to the extent that the TIM performance is compromised. On the other hand, coefficient of thermal expansion mismatch between surfaces creates strain that needs to be absorbed, which requires CNT arrays with sufficient height. Transfer and bonding of both CNT roots and tips also create more reliable interfaces. Crucially, we find that the CNT array height of most previously reported CNT array TIMs is not enough to prevent significant reliability problems.

2.
Nanotechnology ; 31(42): 424003, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32597397

RESUMEN

During the last decade, graphene foam emerged as a promising high porosity 3-dimensional (3D) structure for various applications. More specifically, it has attracted significant interest as a solution for thermal management in electronics. In this study, we investigate the possibility to use such porous materials as a heat sink and a container for a phase change material (PCM). Graphene foam (GF) was produced using chemical vapor deposition (CVD) process and attached to a thermal test chip using sintered silver nanoparticles (Ag NPs). The thermal conductivity of the graphene foam reached 1.3 W m-1 K-1, while the addition of Ag as a graphene foam silver composite (GF/Ag) enhanced further its effective thermal conductivity by 54%. Comparatively to nickel foam, GF and GF/Ag showed lower junction temperatures thanks to higher effective thermal conductivity and a better contact. A finite element model was developed to simulate the fluid flow through the foam structure model and showed a positive and a non-negligible contributions of the secondary microchannel within the graphene foam. A ratio of 15 times was found between the convective heat flux within the primary and secondary microchannel. Our paper successfully demonstrates the possibility of using such 3D porous material as a PCM container and heat sink and highlight the advantage of using the carbon-based high porosity material to take advantage of its additional secondary porosity.

3.
Nanotechnology ; 31(34): 345601, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32369782

RESUMEN

Mono- to few-layer graphene materials are successfully synthesized multiple times using Cu-Ni alloy as a catalyst after a single-chemical vapor deposition (CVD) process. The multiple synthesis is realized by extracting carbon source pre-dissolved in the catalyst substrate. Firstly, graphene is grown by the CVD method on Cu-Ni catalyst substrates. Secondly, the same Cu-Nicatalyst foils are annealed, in absence of any external carbon precursor, to grow graphene using the carbon atoms pre-dissolved in the catalyst during the CVD process. This annealing process is repeated to synthesize graphene successfully until carbon is exhausted in the Cu-Ni foils. After the CVD growth and each annealing growth process, the as-grown graphene is removed using a bubbling transfer method. A wide range of characterizations are performed to examine the quality of the obtained graphene material and to monitor the carbon concentration in the catalyst substrates. Results show that graphene from each annealing growth process possesses a similar quality, which confirmed the good reproducibility of the method. This technique brings great freedom to graphene growth and applications, and it could be also used for other 2D material synthesis.

4.
Nanotechnology ; 31(45): 455708, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-32454479

RESUMEN

Thermal treatment of carbon nanotubes (CNTs) can significantly improve their mechanical, electrical and thermal properties due to reduced defects and increased crystallinity. In this work we investigate the effect of annealing at 3000 °C of vertically aligned CNT arrays synthesized by chemical vapor deposition (CVD) on graphite. Raman measurements show a drastically reduced amount of defects and, together with transmission electron microscope (TEM) diffraction measurements, an increased average crystallite size of around 50%, which corresponds to a 124% increase in Young's modulus. We also find a tendency for CNTs to bond to each other with van der Waals (vdW) forces, which causes individual CNTs to closely align with each other. This bonding causes a densification effect on the entire CNT array, which appears at temperatures >1000 °C. The densification onset temperature corresponds to the thermal decomposition of oxygen containing functional groups, which otherwise prevents close enough contact for vdW bonding. Finally, the remaining CVD catalyst on the bottom of the CNT array is evaporated during annealing, enabling direct anchoring of the CNTs to the underlying graphite substrate.

5.
ACS Appl Mater Interfaces ; 9(17): 14555-14560, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28429587

RESUMEN

We demonstrate the thermal conductivity enhancement of the vertically aligned carbon nanotube (CNT) arrays (from ∼15.5 to 29.5 W/mK, ∼90% increase) by encapsulating outer boron nitride nanotube (BNNT, 0.97 nm-thick with ∼3-4 walls). The heat transfer enhancement mechanism of the coaxial C@BNNT was further revealed by molecular dynamics simulations. Because of their highly coherent lattice structures, the outer BNNT serves as additional heat conducting path without impairing the thermal conductance of inner CNT. This work provides deep insights into tailoring the heat transfer of arbitrary CNT arrays and will enable their broader applications as thermal interface material.

6.
Small ; 12(11): 1521-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26766128

RESUMEN

In this paper, an embedded fin-like metal-coated carbon nanotube (Fin-M/CNT) structure is demonstrated for flexible and transparent conductor wire applications. Embedded in a polydimethylsiloxane polymeric substrate, Fin-M/CNT wires with a minimum width of 5 µm and a minimum pitch of 10 µm have been achieved. Direct current resistances of single Fin-M/CNT wires, where the supporting CNT structures have been covered by Ti/Al/Au metal coatings of different thicknesses, have been measured. The high aspect ratio of the fin-like structures not only improves the adhesion between the wires and the polymeric substrate, but also yields a low resistance at a small surface footprint. In addition, transparent Fin-M/CNT grid lines with hexagonal patterns, with a sheet resistance of as low as 45 Ω sq(-1) , have been achieved at an optical transmittance of 88%. The robustness of the Fin-M/CNT structures has been demonstrated in bending tests up to 500 cycles and no significant changes in wire resistances are observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...