Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 94: 104692, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451904

RESUMEN

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Asunto(s)
Síndrome de Down , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Envejecimiento , Diferenciación Celular , Síndrome de Down/genética , Quinasas DyrK
2.
Alcohol Alcohol ; 57(5): 581-588, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952336

RESUMEN

AIMS: Wernicke-Korsakoff syndrome (WKS) is commonly associated with chronic alcohol misuse, a condition known to have multiple detrimental effects on thiamine metabolism. This study was conducted to identify genetic variants that may contribute to the development of WKS in individuals with alcohol dependence syndrome through alteration of thiamine transport into cells. METHODS: Exome sequencing data from a panel of genes related to alcohol metabolism and thiamine pathways were analysed in a discovery cohort of 29 individuals with WKS to identify possible genetic risk variants associated with its development. Variant frequencies in this discovery cohort were compared with European frequencies in the Genome Aggregation Database browser, and those present at significantly higher frequencies were genotyped in an additional cohort of 87 alcohol-dependent cases with WKS and 197 alcohol-dependent cognitively intact controls. RESULTS: Thirty non-synonymous variants were identified in the discovery cohort and, after filtering, 23 were taken forward and genotyped in the case-control cohort. Of these SLC19A1:rs1051266:G was nominally associated with WKS. SLC19A1 encodes the reduced folate carrier, a major transporter for physiological folate in plasma; rs1051266 is reported to impact folate transport. Thiamine pyrophosphate (TPP) efflux was significantly decreased in HEK293 cells, stably transfected with rs1051266:G, under thiamine deficient conditions when compared with the efflux from cells transfected with rs1051266:A (P = 5.7 × 10-11). CONCLUSION: This study provides evidence for the role of genetic variation in the SLC19A1 gene, which may contribute to the development of WKS in vivo through modulation of TPP transport in cells.


Asunto(s)
Alcoholismo , Síndrome de Korsakoff , Proteína Portadora de Folato Reducido , Deficiencia de Tiamina , Alcoholismo/complicaciones , Etanol , Ácido Fólico , Variación Genética/genética , Células HEK293 , Humanos , Síndrome de Korsakoff/complicaciones , Proteína Portadora de Folato Reducido/genética , Tiamina , Deficiencia de Tiamina/genética , Tiamina Pirofosfato/metabolismo
4.
Mol Psychiatry ; 26(10): 5766-5788, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32647257

RESUMEN

A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of ß-amyloid-(Aß)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aß deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical ß and γ-secretase inhibition. We found that T21 organoids secrete increased proportions of Aß-preventing (Aß1-19) and Aß-degradation products (Aß1-20 and Aß1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Síndrome de Down/genética , Genes Supresores , Humanos , Organoides/metabolismo , Trisomía
5.
Prog Brain Res ; 251: 55-90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32057312

RESUMEN

Down Syndrome (DS) is a complex chromosomal disorder, with neurological issues, featuring among the symptoms. Primary neuronal cells and tissues are extremely useful, but limited both in supply and experimental manipulability. To better understand the cellular, molecular and pathological mechanisms involved in DS neurodevelopment and neurodegeneration, a range of different cellular models have been developed over the years including human: mouse hybrid cells, transchromosomic mouse embryonic stem cells (ESCs) and human ESC and induced pluripotent stem cells derived from different sources. All of these model systems have provided useful information in the study of DS. Furthermore, different technologies to genetically modify or correct trisomy of either single genes or the whole chromosome have been developed using these cellular models. New techniques and protocols to allow better modeling of cellular mechanisms and disease processes are being developed and the use of cerebral organoids offers great promise for future research into the neural phenotypes seen in DS.


Asunto(s)
Sistemas CRISPR-Cas , Síndrome de Down , Modelos Biológicos , Organoides , Células Madre Pluripotentes , Animales , Humanos
6.
Am J Med Genet B Neuropsychiatr Genet ; 180(4): 258-265, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30859703

RESUMEN

A rare microcephalin 1 gene (MCPH1) variant rs61749465A>G (p.Asp61Gly) with prior evidence for association with schizophrenia (p = 3.78 × 10-7 ) was tested for association in 2,300 bipolar disorder (BPD) participants, 1,930 SCZ participants and 1,820 normal comparison subjects. We report evidence for association of rs61749465A>G with BPD (p = 0.0009). rs61749465 is located in the N-terminal of the BRCT1 domain of MCPH1. Bioinformatic analysis predicted the Asp61Gly substitution to be damaging to MCPH1 function. A second MCPH1 BRCT1 domain variant (rs199422124C>G; p.Thr27Arg), reported to cause autosomal recessive microcephaly, was not detected in the participants tested here. We sought to characterize the functional effects of these variants on MCPH1 function. Cell count assays indicated that rs199422124 allele G had a greater impact on cell survival compared to the G allele of rs61749465. Gene expression analysis combined with gene network and pathway analysis indicated that rs61749465 allele G may impact protein translation and cell cycle control. The evidence for association between rs61749465A>G and psychosis in both BPD and SCZ warrants further replication. Likewise, the data from the functional analyses point to molecular mechanisms that may underlie the proposed MCPH1 mediated risk of psychosis and pathogenesis in autosomal recessive microcephaly require additional experimental validation.


Asunto(s)
Trastorno Bipolar/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Esquizofrenia/genética , Alelos , Daño del ADN/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Ann Hum Genet ; 82(2): 88-92, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29148569

RESUMEN

Schizophrenia (SCZ) is a severe, highly heritable psychiatric disorder. Elucidation of the genetic architecture of the disorder will facilitate greater understanding of the altered underlying neurobiological mechanisms. The aim of this study was to identify likely aetiological variants in subjects affected with SCZ. Exome sequence data from a SCZ cas-control sample from Sweden was analysed for likely aetiological variants using a weighted burden test. Suggestive evidence implicated the UNC-51-like kinase (ULK1) gene, and it was observed that four rare variants that were more common in the Swedish SCZ cases were also more common in UK10K SCZ cases, as compared to obesity cases. These three missense variants and one intronic variant were genotyped in the University College London cohort of 1304 SCZ cases and 1348 ethnically matched controls. All four variants were more common in the SCZ cases than controls and combining them produced a result significant at P = 0.02. The results presented here demonstrate the importance of following up exome sequencing studies using additional datasets. The roles of ULK1 in autophagy and mTOR signalling strengthen the case that these pathways may be important in the pathophysiology of SCZ. The findings reported here await independent replication.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Exoma , Péptidos y Proteínas de Señalización Intracelular/genética , Esquizofrenia/genética , Estudios de Casos y Controles , Genotipo , Humanos , Intrones , Mutación Missense , Suecia , Secuenciación del Exoma
8.
Am J Med Genet B Neuropsychiatr Genet ; 174(7): 724-731, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28719003

RESUMEN

Risk of schizophrenia is conferred by alleles occurring across the full spectrum of frequencies from common SNPs of weak effect through to ultra rare alleles, some of which may be moderately to highly penetrant. Previous studies have suggested that some of the risk of schizophrenia is attributable to uncommon alleles represented on Illumina exome arrays. Here, we present the largest study of exomic variation in schizophrenia to date, using samples from the United Kingdom and Sweden (10,011 schizophrenia cases and 13,791 controls). Single variants, genes, and gene sets were analyzed for association with schizophrenia. No single variant or gene reached genome-wide significance. Among candidate gene sets, we found significant enrichment for rare alleles (minor allele frequency [MAF] < 0.001) in genes intolerant of loss-of-function (LoF) variation and in genes whose messenger RNAs bind to fragile X mental retardation protein (FMRP). We further delineate the genetic architecture of schizophrenia by excluding a role for uncommon exomic variants (0.01 ≤ MAF ≥ 0.001) that confer a relatively large effect (odds ratio [OR] > 4). We also show risk alleles within this frequency range exist, but confer smaller effects and should be identified by larger studies.


Asunto(s)
Exoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Mutación , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética , Estudios de Casos y Controles , Estudios de Cohortes , Estudios de Seguimiento , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Pronóstico
9.
Psychiatr Genet ; 26(6): 229-257, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27606929

RESUMEN

The XXIIIrd World Congress of Psychiatric Genetics meeting, sponsored by the International Society of Psychiatric Genetics, was held in Toronto, ON, Canada, on 16-20 October 2015. Approximately 700 participants attended to discuss the latest state-of-the-art findings in this rapidly advancing and evolving field. The following report was written by trainee travel awardees. Each was assigned one session as a rapporteur. This manuscript represents the highlights and topics that were covered in the plenary sessions, symposia, and oral sessions during the conference, and contains major notable and new findings.


Asunto(s)
Trastornos Mentales/genética , Estudio de Asociación del Genoma Completo , Humanos , Salud Mental
10.
Clin Epigenetics ; 8: 52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27175219

RESUMEN

Bipolar disorder (BD) and schizophrenia (SZ) are known to share common genetic and psychosocial risk factors. A recent epigenome-wide association study performed on blood samples from SZ patients found significant hypomethylation of FAM63B in exon 9. Here, we used iPLEX-based methylation analysis to investigate two CpG sites in FAM63B in blood samples from 459 BD cases and 268 controls. Both sites were significantly hypomethylated in BD cases (lowest p value = 3.94 × 10(-8)). The methylation levels at the two sites were correlated, and no strong correlation was found with nearby single nucleotide polymorphisms (SNPs), suggesting that methylation differences at these sites are not readably picked up by genome-wide association studies. Overall, FAM63B hypomethylation was found in BD patients, thus replicating the initial finding in SZ patients. This study suggests that FAM63B is a shared epigenetic risk gene for the two disorders.


Asunto(s)
Trastorno Bipolar/genética , Metilación de ADN , Proteínas/genética , Esquizofrenia/genética , Ubiquitina Tiolesterasa/genética , Islas de CpG , Epigénesis Genética , Exones , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos
12.
Am J Hum Genet ; 95(6): 744-53, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25434007

RESUMEN

Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and MIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ∼6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 × 10(-4)). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression.


Asunto(s)
Trastorno Bipolar/genética , Regulación de la Expresión Génica/genética , Variación Genética , MicroARNs/genética , Esquizofrenia/genética , Alelos , Secuencia de Bases , Línea Celular Tumoral , Frecuencia de los Genes , Genes Reporteros , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Riesgo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...