Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3420, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658531

RESUMEN

Poly-ß-(1-6)-N-acetylglucosamine (PNAG) is an important vaccine target, expressed on many pathogens. A critical hurdle in developing PNAG based vaccine is that the impacts of the number and the position of free amine vs N-acetylation on its antigenicity are not well understood. In this work, a divergent strategy is developed to synthesize a comprehensive library of 32 PNAG pentasaccharides. This library enables the identification of PNAG sequences with specific patterns of free amines as epitopes for vaccines against Staphylococcus aureus (S. aureus), an important human pathogen. Active vaccination with the conjugate of discovered PNAG epitope with mutant bacteriophage Qß as a vaccine carrier as well as passive vaccination with diluted rabbit antisera provides mice with near complete protection against infections by S. aureus including methicillin-resistant S. aureus (MRSA). Thus, the comprehensive PNAG pentasaccharide library is an exciting tool to empower the design of next generation vaccines.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Ratones , Staphylococcus aureus/inmunología , Conejos , Vacunas Estafilocócicas/inmunología , Vacunas Estafilocócicas/administración & dosificación , Femenino , Staphylococcus aureus Resistente a Meticilina/inmunología , Acetilglucosamina/inmunología , Humanos , Epítopos/inmunología , Ratones Endogámicos BALB C
2.
Lancet Gastroenterol Hepatol ; 9(4): 366-382, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367631

RESUMEN

Direct-acting antivirals (DAAs) for hepatitis C virus (HCV) infection have delivered high response rates (>95%) and simplified the management of HCV treatment, permitting non-specialists to manage patients without advanced liver disease. We collected and reviewed global data on the registration and reimbursement (government subsidised) of HCV therapies, including restrictions on reimbursement. Primary data collection occurred between Nov 15, 2021, and July 24, 2023, through the assistance of a global network of 166 HCV experts. We retrieved data for 160 (77%) of 209 countries and juristrictions. By mid-2023, 145 (91%) countries had registered at least one of the following DAA therapies: sofosbuvir-velpatasvir, sofosbuvir-velpatasvir-voxilaprevir, glecaprevir-pibrentasvir, sofosbuvir-daclatasvir, or sofosbuvir. 109 (68%) countries reimbursed at least one DAA therapy. Among 102 low-income and middle-income countries (LMICs), 89 (87%) had registered at least one HCV DAA therapy and 53 (52%) reimbursed at least one DAA therapy. Among all countries with DAA therapy reimbursement (n=109), 66 (61%) required specialist prescribing, eight (7%) had retreatment restrictions, seven (6%) had an illicit drug use restriction, five (5%) had an alcohol use restriction, and three (3%) had liver disease restrictions. Global access to DAA reimbursement remains uneven, with LMICs having comparatively low reimbursement compared with high-income countries. To meet WHO goals for HCV elimination, efforts should be made to assist countries, particularly LMICs, to increase access to DAA reimbursement and remove reimbursement restrictions-especially prescriber-type restrictions-to ensure universal access.


Asunto(s)
Bencimidazoles , Benzopiranos , Carbamatos , Hepatitis C Crónica , Hepatitis C , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Sofosbuvir/efectos adversos , Antivirales/efectos adversos , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/epidemiología , Hepatitis C/tratamiento farmacológico , Hepatitis C/epidemiología , Hepacivirus/genética
3.
Angew Chem Int Ed Engl ; 62(47): e202309744, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37781858

RESUMEN

Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qß. Mouse immunization with the Qß-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qß-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qß-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.


Asunto(s)
Bacteriófagos , Vacunas contra el Cáncer , Neoplasias , Ratones , Humanos , Animales , Antígeno CA-19-9 , Vacunas contra el Cáncer/química , Inmunoglobulina G/metabolismo
4.
Bioconjug Chem ; 33(7): 1350-1362, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35687881

RESUMEN

N-Glycosylation plays an important role in many biological recognition processes. However, very few N-glycan-specific antibodies are available for functional studies and potentially for therapeutic development. In this study, we sought to synthesize bacteriophage Qß conjugates with representative N-glycans and investigate their immunogenicity for raising N-glycan-specific antibodies. An array of Qß glycoconjugates bearing five different human N-glycans and two different chemical linkers were synthesized, and the immunization of the N-glycan-Qß conjugates was performed in mice. We found that the N-glycan-Qß conjugates raised significant IgG antibodies that recognize N-glycans, but, surprisingly, most of the glycan-dependent antibodies were directed to the shared chitobiose core and were nonspecific for respective N-glycan structures. The linker chemistry was found to affect antibody specificity with adipic acid-linked N-glycan-Qß immunogens raising antibodies capable of recognizing both the N-acetylglucosamine (GlcNAc) moieties of the chitobiose core. In contrast, antibodies raised by N-glycan-Qß immunogens with a triazole linker preferentially recognized the innermost N-acetylglucosamine moiety at the reducing end. We also found that sialylation of the N-glycans significantly suppressed the immune response. Furthermore, the N-glycan-Qß immunogens with an adipic acid linker elicited higher glycan-specific antibody titers than the N-glycan-triazole-Qß immunogens. These findings delineate several challenges in eliciting mammalian N-glycan-specific antibodies through the conventional glycoconjugate vaccine design and immunization.


Asunto(s)
Acetilglucosamina , Formación de Anticuerpos , Allolevivirus/química , Animales , Antígenos , Disacáridos , Glicoconjugados , Humanos , Mamíferos , Ratones , Polisacáridos/química , Triazoles
5.
Evolution ; 76(4): 821-823, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149989

RESUMEN

A longstanding goal of evolutionary biology is to understand the relationship between genotype and phenotype. Schiffman and Ralph use mathematical modeling to theoretically examine how the genetic network underlying a conserved phenotype can change over time. They found that when phenotypically identical populations with different gene network configurations interbreed, hybrid incompatibilities can arise. These results suggest that neutral processes could play a major role in driving speciation.


Asunto(s)
Evolución Biológica , Hibridación Genética , Redes Reguladoras de Genes , Especiación Genética , Genotipo , Modelos Genéticos , Fenotipo
6.
Methods Mol Biol ; 2417: 221-238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099803

RESUMEN

This protocol describes the chemical synthesis of the dynamin inhibitors Dynole 34-2 and Acrylo-Dyn 2-30, and their chemical scaffold matched partner inactive compounds. The chosen active and inactive paired compounds represent potent dynamin inhibitors and very closely related dynamin-inactive compounds, with the synthesis of three of the four compounds readily possible via a common intermediate. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.


Asunto(s)
Dinaminas , Endocitosis , Cianoacrilatos , Indoles/química
7.
Methods Mol Biol ; 2417: 239-258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099804

RESUMEN

Herein we describe the detailed synthesis of the dynamin inhibitors Phthaladyn-29 and Napthaladyn-10, and their chemical scaffold matched partner inactive compounds. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.


Asunto(s)
Endocitosis , Naftalimidas , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo
8.
Appl Opt ; 60(16): 4755-4761, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143040

RESUMEN

Tunable spherical fluidic lenses are among the most essential components in adaptive optics. However, fabricating cylindrical tunable lenses has proven more challenging, mainly due to the difficulty in eliminating the defocus component. We demonstrate a parametric approach to minimize the defocus in cylindrical tunable fluidic lenses. We theoretically model and experimentally verify that a dog-bone-shaped tunable cylindrical fluidic lens exhibits almost pure cylindrical performance within the range of ${\pm{\rm 5D}}$ of astigmatism. We anticipate these results will facilitate the use of tunable cylindrical fluidic lenses in adaptive optics applications and particularly ophthalmic devices, where rapid and reliable wavefront correction is required.

9.
Front Cell Neurosci ; 15: 754110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35115907

RESUMEN

Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of "cargo"-the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.

10.
Genes Dev ; 34(7-8): 526-543, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32079652

RESUMEN

MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2-MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2-MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ferroptosis/genética , Metabolismo de los Lípidos/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Proteínas de Ciclo Celular/genética , Glioblastoma/fisiopatología , Células HCT116 , Humanos , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Interferencia de ARN , Ratas , Proteína p53 Supresora de Tumor/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
11.
Chem Biol Drug Des ; 92(1): 1171-1197, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29469975

RESUMEN

3,4,5-Trihydroxypiperidines belong to the family of 1,5-dideoxy-1,5-iminosugar natural products and are structural analogues of pentose monosaccharides in the pyranose form. The biological activities of these apparently structurally simple molecules and their N- and O-alkylated and -arylated derivatives are no less remarkable than their C-6 hydroxymethyl counterparts of the hexoses (such as 1-deoxynojirimycin, DNJ). Their biological profiles indicate that the hydroxymethyl branch is crucial to neither potency nor selectivity, with O-alkylation demonstrated to produce exquisite selectivity extending beyond glycosidase inhibition, to immunosuppressant and antibacterial activities.


Asunto(s)
Productos Biológicos/química , Piperidinas/química , 1-Desoxinojirimicina/química , Animales , Antivirales/química , Antivirales/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Rechazo de Injerto/prevención & control , VIH-1/efectos de los fármacos , Monosacáridos/química , Piperidinas/farmacología , Piperidinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...