Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Eur J Neurol ; : e16275, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576261

RESUMEN

BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. METHODS: A panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. RESULTS: A high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with γ-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. CONCLUSIONS: These consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy.

2.
Front Cell Dev Biol ; 12: 1321282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505260

RESUMEN

SYNGAP1 haploinsufficiency results in a developmental and epileptic encephalopathy (DEE) causing generalized epilepsies accompanied by a spectrum of neurodevelopmental symptoms. Concerning interictal epileptiform discharges (IEDs) in electroencephalograms (EEG), potential biomarkers have been postulated, including changes in background activity, fixation-off sensitivity (FOS) or eye closure sensitivity (ECS). In this study we clinically evaluate a new cohort of 36 SYNGAP1-DEE individuals. Standardized questionnaires were employed to collect clinical, electroencephalographic and genetic data. We investigated electroencephalographic findings, focusing on the cortical distribution of interictal abnormalities and their changes with age. Among the 36 SYNGAP1-DEE cases 18 presented variants in the SYNGAP1 gene that had never been previously reported. The mean age of diagnosis was 8 years and 8 months, ranging from 2 to 17 years, with 55.9% being male. All subjects had global neurodevelopmental/language delay and behavioral abnormalities; 83.3% had moderate to profound intellectual disability (ID), 91.7% displayed autistic traits, 73% experienced sleep disorders and 86.1% suffered from epileptic seizures, mainly eyelid myoclonia with absences (55.3%). A total of 63 VEEGs were revised, observing a worsening of certain EEG findings with increasing age. A disorganized background was observed in all age ranges, yet this was more common among older cases. The main IEDs were bilateral synchronous and asynchronous posterior discharges, accounting for ≥50% in all age ranges. Generalized alterations with maximum amplitude in the anterior region showed as the second most frequent IED (≥15% in all age ranges) and were also more common with increasing age. Finally, diffuse fast activity was much more prevalent in cases with 6 years or older. To the best of our knowledge, this is the first study to analyze EEG features across different age groups, revealing an increase in interictal abnormalities over infancy and adolescence. Our findings suggest that SYNGAP1 haploinsufficiency has complex effects in human brain development, some of which might unravel at different developmental stages. Furthermore, they highlight the potential of baseline EEG to identify candidate biomarkers and the importance of natural history studies to develop specialized therapies and clinical trials.

3.
J Inherit Metab Dis ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932875

RESUMEN

The study of inborn errors of neurotransmission has been mostly focused on monoamine disorders, GABAergic and glycinergic defects. The study of the glutamatergic synapse using the same approach than classic neurotransmitter disorders is challenging due to the lack of biomarkers in the CSF. A metabolomic approach can provide both insight into their molecular basis and outline novel therapeutic alternatives. We have performed a semi-targeted metabolomic analysis on CSF samples from 25 patients with neurogenetic disorders with an important expression in the glutamatergic synapse and 5 controls. Samples from patients diagnosed with MCP2, CDKL5-, GRINpathies and STXBP1-related encephalopathies were included. We have performed univariate (UVA) and multivariate statistical analysis (MVA), using Wilcoxon rank-sum test, principal component analysis (PCA), and OPLS-DA. By using the results of both analyses, we have identified the metabolites that were significantly altered and that were important in clustering the respective groups. On these, we performed pathway- and network-based analyses to define which metabolic pathways were possibly altered in each pathology. We have observed alterations in the tryptophan and branched-chain amino acid metabolism pathways, which interestingly converge on LAT1 transporter-dependency to cross the blood-brain barrier (BBB). Analysis of the expression of LAT1 transporter in brain samples from a mouse model of Rett syndrome (MECP2) revealed a decrease in the transporter expression, that was already noticeable at pre-symptomatic stages. The study of the glutamatergic synapse from this perspective advances the understanding of their pathophysiology, shining light on an understudied feature as is their metabolic signature.

4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674969

RESUMEN

Rett syndrome (RTT) is a severe neurodevelopmental disease caused almost exclusively by mutations to the MeCP2 gene. This disease may be regarded as a synaptopathy, with impairments affecting synaptic plasticity, inhibitory and excitatory transmission and network excitability. The complete understanding of the mechanisms behind how the transcription factor MeCP2 so profoundly affects the mammalian brain are yet to be determined. What is known, is that MeCP2 involvement in activity-dependent expression programs is a critical link between this protein and proper neuronal activity, which allows the correct maturation of connections in the brain. By using RNA-sequencing analysis, we found several immediate-early genes (IEGs, key mediators of activity-dependent responses) directly bound by MeCP2 at the chromatin level and upregulated in the hippocampus and prefrontal cortex of the Mecp2-KO mouse. Quantification of the IEGs response to stimulus both in vivo and in vitro detected an aberrant expression pattern in MeCP2-deficient neurons. Furthermore, altered IEGs levels were found in RTT patient's peripheral blood and brain regions of post-mortem samples, correlating with impaired expression of downstream myelination-related genes. Altogether, these data indicate that proper IEGs expression is crucial for correct synaptic development and that MeCP2 has a key role in the regulation of IEGs.


Asunto(s)
Síndrome de Rett , Ratones , Animales , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Genes Inmediatos-Precoces , Proteína 2 de Unión a Metil-CpG/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Mamíferos/metabolismo
5.
Brain Pathol ; 33(3): e13134, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36450274

RESUMEN

Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.


Asunto(s)
Proteínas de Arabidopsis , Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mitocondrias/patología , Proteínas/genética , Mutación/genética , Fenotipo , Proteínas de Unión al ARN , Proteínas de Arabidopsis/genética
6.
Neurology ; 98(9): e912-e923, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012964

RESUMEN

BACKGROUND AND OBJECTIVES: Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes. METHODS: A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient. RESULTS: We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD. DISCUSSION: Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Exoma , Sustancia Blanca , Secuencia de Bases , Enfermedades del Sistema Nervioso Central/genética , Exoma/genética , Humanos , Sustancia Blanca/patología , Secuenciación del Exoma , Secuenciación Completa del Genoma
7.
NEJM Evid ; 1(7): EVIDoa2200052, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38319253

RESUMEN

Gene Therapy for Mucopolysaccharidosis Type VIIn this open-label gene therapy study, infusions for MPS type VI occurred without severe adverse events. In the high-dose cohort, serum active arylsulfatase B reached 30% to 100% of normal. A modest urinary GAG increase did not require reintroduction of enzyme replacement therapy. Clinical deterioration was not noted for up to 2 years after therapy.

8.
Parkinsonism Relat Disord ; 91: 19-22, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454394

RESUMEN

INTRODUCTION: Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by a deficiency of acid ß-glucosidase encoded by the GBA gene. In patients with GD, childhood onset parkinsonian features have been rarely described. METHODS: Twin siblings with GD are described, including clinical follow-up and treatment response. Bone marrow, enzyme activity studies and genotyping were performed. RESULTS: By age 9 months, symptoms at onset were thrombocytopenia and splenomegaly. By age 2, hypokinesia, bradykinesia and oculomotor apraxia were observed. By age 5 a complete rigid hypokinetic syndrome was stablished in both patients, including bradykinesia, tremor and rigidity. Treatment with imiglucerase, miglustat, ambroxol and levodopa were performed. Levodopa showed a good response with improvement in motor and non-motor skills. Foamy cells were found in the bone marrow study. Glucocerebrosidase activity was 28% and 26%. Sanger sequencing analysis identified a missense mutation and a complex allele (NP_000148: p.[(Asp448His)]; [(Leu422Profs*4)]) in compound heterozygosity in GBA gene. CONCLUSIONS: Two siblings with neuronopathic GD with an intermediate form between type 2 and 3, with a systemic and neurological phenotype are described. The complex neurological picture included a hypokinetic-rigid and tremor syndrome that improved with levodopa treatment. These conditions together have not been previously described in pediatric GD. We suggest that in children with parkinsonian features, lysosomal storage disorders must be considered, and a levodopa trial must be performed. Moreover, this report give support to the finding that GBA and parkinsonian features share biological pathways and highlight the importance of lysosomal mechanisms in parkinsonism pathogenesis, what might have therapeutic implications.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Enfermedades en Gemelos/genética , Enfermedad de Gaucher/genética , Levodopa/uso terapéutico , Trastornos Parkinsonianos/genética , Preescolar , Enfermedades en Gemelos/tratamiento farmacológico , Femenino , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/patología , Humanos , Lactante , Masculino , Trastornos Parkinsonianos/tratamiento farmacológico , Fenotipo , Gemelos/genética
9.
Biomedicines ; 9(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546327

RESUMEN

Methyl-CpG-binding protein 2 (MeCP2) is an X-linked epigenetic modulator whose dosage is critical for neural development and function. Loss-of-function mutations in MECP2 cause Rett Syndrome (RTT, OMIM #312750) while duplications in the Xq28 locus containing MECP2 and Interleukin-1 receptor-associated kinase 1 (IRAK1) cause MECP2 duplication syndrome (MDS, OMIM #300260). Both are rare neurodevelopmental disorders that share clinical symptoms, including intellectual disability, loss of speech, hand stereotypies, vasomotor deficits and seizures. The main objective of this exploratory study is to identify novel signaling pathways and potential quantitative biomarkers that could aid early diagnosis and/or the monitoring of disease progression in clinical trials. We analyzed by RT-PCR gene expression in whole blood and microRNA (miRNA) expression in plasma, in a cohort of 20 females with Rett syndrome, 2 males with MECP2 duplication syndrome and 28 healthy controls, and correlated RNA expression with disease and clinical parameters. We have identified a set of potential biomarker panels for RTT diagnostic and disease stratification of patients with microcephaly and vasomotor deficits. Our study sets the basis for larger studies leading to the identification of specific miRNA signatures for early RTT detection, stratification, disease progression and segregation from other neurodevelopmental disorders. Nevertheless, these data will require verification and validation in further studies with larger sample size including a whole range of ages.

11.
Orphanet J Rare Dis ; 15(1): 44, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041641

RESUMEN

BACKGROUND: Pathogenic variants of the lysine acetyltransferase 6A or KAT6A gene are associated with a newly identified neurodevelopmental disorder characterized mainly by intellectual disability of variable severity and speech delay, hypotonia, and heart and eye malformations. Although loss of function (LoF) mutations were initially reported as causing this disorder, missense mutations, to date always involving serine residues, have recently been associated with a form of the disorder without cardiac involvement. RESULTS: In this study we present five new patients, four with truncating mutations and one with a missense change and the only one not presenting with cardiac anomalies. The missense change [p.(Gly359Ser)], also predicted to affect splicing by in silico tools, was functionally tested in the patient's lymphocyte RNA revealing a splicing effect for this allele that would lead to a frameshift and premature truncation. CONCLUSIONS: An extensive revision of the clinical features of these five patients revealed high concordance with the 80 cases previously reported, including developmental delay with speech delay, feeding difficulties, hypotonia, a high bulbous nose, and recurrent infections. Other features present in some of these five patients, such as cryptorchidism in males, syndactyly, and trigonocephaly, expand the clinical spectrum of this syndrome.


Asunto(s)
Discapacidad Intelectual , Histona Acetiltransferasas , Humanos , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/genética , Mutación/genética , Mutación Missense/genética , Síndrome
12.
J Inherit Metab Dis ; 43(4): 800-818, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32030781

RESUMEN

Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/inducido químicamente , Preparaciones Farmacéuticas , Consenso , Técnica Delphi , Diseño de Fármacos , Humanos , Internacionalidad , Mitocondrias/metabolismo , Guías de Práctica Clínica como Asunto , Pruebas de Toxicidad
13.
Clin Genet ; 97(4): 610-620, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043567

RESUMEN

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho-motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls. Clinical suspicions were confirmed by array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA). Using, a custom in-house MLPA assay, we performed a thorough study of the minimal duplicated region, from which we concluded a complete duplication of both MECP2 and IRAK1 was necessary for a correct MDS diagnosis, as patients with partial MECP2 duplications lacked some typical clinical traits present in other MDS patients. In addition, the duplication location may be related to phenotypic severity. This observation may provide a new approach for genotype-phenotype correlations, and thus more personalized genetic counselling.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Quinasas Asociadas a Receptores de Interleucina-1/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos X/genética , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/patología , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Linaje , Medicina de Precisión , Adulto Joven
14.
Int J Mol Sci ; 21(2)2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947619

RESUMEN

Rett syndrome, a serious neurodevelopmental disorder, has been associated with an altered expression of different synaptic-related proteins and aberrant glutamatergic and γ-aminobutyric acid (GABA)ergic neurotransmission. Despite its severity, it lacks a therapeutic option. Through this work we aimed to define the relationship between MeCP2 and GABAA.-A1 receptor expression, emphasizing the time dependence of such relationship. For this, we analyzed the expression of the ionotropic receptor subunit in different MeCP2 gene-dosage and developmental conditions, in cells lines, and in primary cultured neurons, as well as in different developmental stages of a Rett mouse model. Further, RNAseq and systems biology analysis was performed from post-mortem brain biopsies of Rett patients. We observed that the modulation of the MeCP2 expression in cellular models (both Neuro2a (N2A) cells and primary neuronal cultures) revealed a MeCP2 positive effect on the GABAA.-A1 receptor subunit expression, which did not occur in other proteins such as KCC2 (Potassium-chloride channel, member 5). In the Mecp2+/- mouse brain, both the KCC2 and GABA subunits expression were developmentally regulated, with a decreased expression during the pre-symptomatic stage, while the expression was variable in the adult symptomatic mice. Finally, the expression of the gamma-aminobutyric acid (GABA) receptor-related synaptic proteins from the postmortem brain biopsies of two Rett patients was evaluated, specifically revealing the GABA A1R subunit overexpression. The identification of the molecular changes along with the Rett syndrome prodromic stages strongly endorses the importance of time frame when addressing this disease, supporting the need for a neurotransmission-targeted early therapeutic intervention.


Asunto(s)
Variación Genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Síndrome de Rett/etiología , Síndrome de Rett/metabolismo , Animales , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Ratones , Terapia Molecular Dirigida , Mutación , Neurogénesis/genética , Neuronas/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/patología , Transducción de Señal
15.
Mol Genet Genomic Med ; 7(11): e972, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31566936

RESUMEN

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is a rare congenital disorder characterized by broad thumbs and halluces, intellectual disability, distinctive facial features, and growth retardation. Clinical manifestations of RSTS are varied and overlap with other syndromes' phenotype, which makes clinical diagnosis challenging. CREBBP is the major causative gene (55%-60% of the cases), whereas pathogenic variants found in EP300 represent the molecular cause in 8% of RSTS patients. A wide range of CREBBP pathogenic variants have been reported so far, including point mutations (30%-50%) and large deletions (10%). METHODS: The aim of this study was to characterize the CREBBP genetic variant spectrum in 39 RSTS patients using Multiplex Ligation-dependent Probe Amplification and DNA sequencing techniques (Sanger and Trio-based whole-exome sequencing). RESULTS: We identified 15 intragenic deletions/duplications, ranging from one exon to the entire gene. As a whole, 25 de novo point variants were detected: 4 missense, 12 nonsense, 5 frameshift, and 4 splicing pathogenic variants. Three of them were classified as of uncertain significance and one of the patients carried two different variants. CONCLUSION: Seventeen of the 40 genetic variants detected were reported for the first time in this work contributing, thus, to expand the molecular knowledge of this complex disorder.


Asunto(s)
Proteína de Unión a CREB/genética , Proteína p300 Asociada a E1A/genética , Estudios de Asociación Genética , Mutación , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patología , Adolescente , Adulto , Niño , Preescolar , Femenino , Genotipo , Humanos , Lactante , Masculino , Fenotipo , Adulto Joven
16.
Sci Rep ; 9(1): 11983, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427717

RESUMEN

Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.


Asunto(s)
Fenotipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Inactivación del Cromosoma X , Alelos , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Genes Ligados a X , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Análisis de Secuencia de ADN
17.
Neurogenetics ; 20(2): 73-82, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30903322

RESUMEN

Celia's encephalopathy (progressive encephalopathy with/without lipodystrophy (PELD)) is a childhood neurodegenerative disorder with a fatal prognosis before the age of 10, due to the variant c.985C>T in the BSCL2 gene that causes a cryptic splicing site leading to skipping of exon 7. For years, different authors have reported cases of congenital generalized lipodystrophy due to the variant c.974dupG in BSCL2 associated with neurological manifestations of variable severity, although some of them clearly superimposable to PELD. To identify the molecular mechanisms responsible for these neurological alterations in two patients with c.974dupG. Clinical characterization, biochemistry, and neuroimaging studies of two girls carrying this variant. In silico analysis, PCR amplification, and BSCL2 cDNA sequencing. BSCL2-201 transcript expression, which lacks exon 7, by qPCR in fibroblasts from the index case, from a healthy child as a control and from two patients with PELD, and in leukocytes from the index case and her parents. One with a severe encephalopathy including a picture of intellectual deficiency, severe language impairment, myoclonic epilepsy, and lipodystrophy as described in PELD, dying at 9 years and 9 months of age. The other 2-year-old patient showed incipient signs of neurological involvement. In silico and cDNA sequencing studies showed that variant c.974dupG gives rise to skipping of exon 7. The expression of BSCL2-201 in fibroblasts was significantly higher in the index case than in the healthy child, although less than in the case with homozygous PELD due to c.985C>T variant. The expression of this transcript was approximately half in the healthy carrier parents of this patient. The c.974dupG variant leads to the skipping of exon 7 of the BSCL2 gene and is responsible for a variant of Celia's encephalopathy, with variable phenotypic expression.


Asunto(s)
Encefalopatías/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Lipodistrofia Generalizada Congénita/genética , Enfermedades Neurodegenerativas/genética , Empalme Alternativo , Niño , Preescolar , ADN Complementario/genética , Exones , Resultado Fatal , Femenino , Fibroblastos/metabolismo , Variación Genética , Homocigoto , Humanos , Fenotipo , Análisis de Secuencia de ADN
18.
Parkinsonism Relat Disord ; 61: 179-186, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30340910

RESUMEN

INTRODUCTION: PLA2G6-associated neurodegeneration (PLAN) comprises a continuum of three phenotypes with overlapping clinical and radiologic features. METHODS: Observational clinical study in a cohort of infantile and childhood onset PLAN patients and genetic analysis of the PLA2G6 gene. We analysed chronological evolution in terms of age at onset and disease course through a 66-item questionnaire. We performed qualitative and quantitative assessment of MRI abnormalities and searched for clinical and radiological phenotype and genotype correlations. RESULTS: Sixteen PLAN patients (mean age: 10.2 years, range 3-33) were evaluated, with a median onset (years) of signs/symptoms as follows: neurological regression (1.5), oculomotor abnormalities (1.5), hypotonia (1.8), gait loss (2.2), pyramidal signs (3.0), axonal neuropathy (3.0), dysphagia (4.0), optic atrophy (4.0), psychiatric symptoms (4.0), seizures (5.9), joint contractures (6.0), dystonia (8.0), bladder dysfunction (13.0) and parkinsonism (15.0). MRI assessment identified cerebellar atrophy (19/19), brain iron deposition (10/19), clava hypertrophy (8/19) and T2/FLAIR hyperintensity of the cerebellar cortex (6/19). The mid-sagittal vermis relative diameter (MVRD) correlated with age at onset of clinical variants, meaning that the earlier the onset, the more severe the cerebellar atrophy. All patients harboured missense, nonsense and frameshift mutations in PLA2G6, including four novel variants. CONCLUSIONS: Cerebellar atrophy was a universal radiological sign in infantile and childhood onset PLAN, and correlated with the severity of the phenotype. Iron accumulation within the globus pallidum and substantia nigra was also a common and strikingly uniform feature regardless of the phenotype.


Asunto(s)
Cerebelo/patología , Globo Pálido/metabolismo , Distrofias Neuroaxonales/patología , Distrofias Neuroaxonales/fisiopatología , Sustancia Negra/metabolismo , Adolescente , Adulto , Edad de Inicio , Atrofia/patología , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Estudios Transversales , Globo Pálido/diagnóstico por imagen , Fosfolipasas A2 Grupo VI/genética , Humanos , Imagen por Resonancia Magnética , Distrofias Neuroaxonales/diagnóstico por imagen , Fenotipo , Índice de Severidad de la Enfermedad , Sustancia Negra/diagnóstico por imagen , Adulto Joven
19.
Mol Genet Metab Rep ; 15: 116-120, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30023300

RESUMEN

There is a growing interest in evaluating the effectiveness of enzyme replacement therapy (ERT) with elosulfase alfa in patients with mucopolysaccharidosis type IVA (MPS-IVA) under real-world conditions. We present the experience of seven pediatric MPS-IVA patients from the Spanish Morquio-A Early Access Program. Efficacy was evaluated based on the distance walked in the 6-min walking test (6-MWT) and the 3-min-stair-climb-test (3-MSCT) at baseline and after 8 months of ERT treatment. Additionally, urinary glycosaminoglycans were measured, and a molecular analysis of a GALNS mutation was performed. The health-related quality of life was evaluated using the EuroQoL (EQ)-5D-5 L. The distance walked according to the 6-MWT ranged from 0 to 325 m at baseline and increased to 12-300 m after 8 months with elosulfase alfa (the walked distance improved in all patients except one). An increase was observed for the two patients who had to use a wheelchair. Improvements were also observed for the 3-MSCT in four patients, whereas two patients showed no changes. Three patients showed an improvement in the EQ-VAS score, whereas the scores of three patients remained stable. Regarding urinary glycosaminoglycans measurements, an irregular response was observed. Our results showed overall improvement in endurance and functionality after 8 months of elosulfase alfa treatment in a heterogeneous subset of MPS IVA patients with severe clinical manifestations managed in a real-world setting.

20.
J Inherit Metab Dis ; 41(6): 1147-1158, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29974349

RESUMEN

Mitochondrial diseases are a group of genetic disorders leading to the dysfunction of mitochondrial energy metabolism pathways. We aimed to assess the clinical phenotype and the biochemical cerebrospinal fluid (CSF) biogenic amine profiles of patients with different diagnoses of genetic mitochondrial diseases. We recruited 29 patients with genetically confirmed mitochondrial diseases harboring mutations in either nuclear or mitochondrial DNA (mtDNA) genes. Signs and symptoms of impaired neurotransmission and neuroradiological data were recorded. CSF monoamines, pterins, and 5-methyltetrahydrofolate (5MTHF) concentrations were analyzed using high-performance liquid chromatography with electrochemical and fluorescence detection procedures. The mtDNA mutations were studied by Sanger sequencing, Southern blot, and real-time PCR, and nuclear DNA was assessed either by Sanger or next-generation sequencing. Five out of 29 cases showed predominant dopaminergic signs not attributable to basal ganglia involvement, harboring mutations in different nuclear genes. A chi-square test showed a statistically significant association between high homovanillic acid (HVA) values and low CSF 5-MTHF values (chi-square = 10.916; p = 0.001). Seven out of the eight patients with high CSF HVA values showed cerebral folate deficiency. Five of them harbored mtDNA deletions associated with Kearns-Sayre syndrome (KSS), one had a mitochondrial point mutation at the mtDNA ATPase6 gene, and one had a POLG mutation. In conclusion, dopamine deficiency clinical signs were present in some patients with mitochondrial diseases with different genetic backgrounds. High CSF HVA values, together with a severe cerebral folate deficiency, were observed in KSS patients and in other mtDNA mutation syndromes.


Asunto(s)
Aminas Biogénicas/líquido cefalorraquídeo , Ácido Homovanílico/líquido cefalorraquídeo , Enfermedades Mitocondriales/líquido cefalorraquídeo , Enfermedades Mitocondriales/diagnóstico , Pterinas/líquido cefalorraquídeo , Tetrahidrofolatos/líquido cefalorraquídeo , ADN Mitocondrial/genética , Humanos , Enfermedades Mitocondriales/genética , Mutación Puntual , Eliminación de Secuencia , Tetrahidrofolatos/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...