Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 943: 173649, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852865

RESUMEN

This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Polen , Esporas Fúngicas , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Microbiología del Aire , Viento , Análisis Espectral/métodos
2.
Sci Total Environ ; 934: 172963, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705300

RESUMEN

The prevalence in allergic diseases has increased considerably in the past decades. An important trigger of the symptoms of allergic rhinitis (hay fever) is the pollen of wind-pollinating plants. This pollen is developed by plants and is released into the air where it gets exposed to environmental influences and air pollution. We investigated the chemical changes to pollen that occur after release from the flower in a rural (Veluwe) and an urban (Amsterdam) site in the Netherlands using Fourier Transform Infrared (FTIR) spectroscopy. During the spring/summer of 2020 (during the COVID pandemic) the pollen of nine taxa (Alnus, Betula, Fagus, Fraxinus, Pinus, Plantago, Poaceae, Quercus and Salix) were collected directly from flowers and the air (using a mobile sampler). FTIR spectra were obtained for multiple individual pollen grains for each taxa. The spectra obtained from airborne pollen collected at the rural vs. urban sites did not show any statistical difference. This is possibly a result of a reduced difference in pollutant concentrations between the two sites due to the COVID-19-lockdown measures were in place. However, consistent differences in the FTIR spectra recovered from airborne vs. flower pollen were recorded for all pollen taxa. After the release from the flower the chemical composition of the pollen changed: (i) polysaccharides are converted to monosaccharides; (ii) protein concentration and/or nitration/oxidation level is altered; (iii) lipids are modified and/or reduced in concentration. These changes may alter the allergenicity of the pollen and suggest that further work on the allergenic nature of airborne pollen is required.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Alérgenos , Monitoreo del Ambiente , Flores , Polen , Países Bajos , Alérgenos/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Espectroscopía Infrarroja por Transformada de Fourier , COVID-19
3.
Sensors (Basel) ; 23(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139506

RESUMEN

The rapid expansion of 3D printing technologies has led to increased utilization in various industries and has also become pervasive in the home environment. Although the benefits are well acknowledged, concerns have arisen regarding potential health and safety hazards associated with emissions of volatile organic compounds (VOCs) and particulates during the 3D printing process. The home environment is particularly hazardous given the lack of health and safety awareness of the typical home user. This study aims to assess the safety aspects of 3D printing of PLA and ABS filaments by investigating emissions of VOCs and particulates, characterizing their chemical and physical profiles, and evaluating potential health risks. Gas chromatography-mass spectrometry (GC-MS) was employed to profile VOC emissions, while a particle analyzer (WIBS) was used to quantify and characterize particulate emissions. Our research highlights that 3D printing processes release a wide range of VOCs, including straight and branched alkanes, benzenes, and aldehydes. Emission profiles depend on filament type but also, importantly, the brand of filament. The size, shape, and fluorescent characteristics of particle emissions were characterized for PLA-based printing emissions and found to vary depending on the filament employed. This is the first 3D printing study employing WIBS for particulate characterization, and distinct sizes and shape profiles that differ from other ambient WIBS studies were observed. The findings emphasize the importance of implementing safety measures in all 3D printing environments, including the home, such as improved ventilation, thermoplastic material, and brand selection. Additionally, our research highlights the need for further regulatory guidelines to ensure the safe use of 3D printing technologies, particularly in the home setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA